【題目】設(shè)中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓C過點(diǎn),F為C的右焦點(diǎn),⊙F的方程為
(1)求C的方程;
(2)若直線與⊙O相切,與⊙F交于M、N兩點(diǎn),與C交于P、Q兩點(diǎn),其中M、P在第一象限,記⊙O的面積為,求取最大值時(shí),直線l的方程.
【答案】(1) (2)
【解析】
(1)由圓的方程求出圓心坐標(biāo)即得焦點(diǎn)方程,由橢圓上的點(diǎn)到兩焦點(diǎn)的距離和得長軸長,從而有,再把點(diǎn)的坐標(biāo)代入橢圓方程,及值可求得得橢圓標(biāo)準(zhǔn)方程;
(2)先確定與圓和橢圓的位置關(guān)系,為下面作距離的差做準(zhǔn)備.直線方程與橢圓方程聯(lián)立,消元后的二次方程,設(shè),由韋達(dá)定理,得
,.由橢圓中的弦長公式得,然后求,由原點(diǎn)到直線的距離求得圓半徑得面積,求出后用基本不等式可求得最大值及此時(shí)的值,得直線方程.
(1)解:設(shè)C的方程為.
由題設(shè)知①
因?yàn)椤?/span>F的標(biāo)準(zhǔn)方程為,
所以F的坐標(biāo)為,半徑.
設(shè)左焦點(diǎn)為,則的坐標(biāo)為.
由橢圓定義,可得
②
由①②解得.
所以C的方程為.
(2)由題設(shè)可知,M在C外,N在C內(nèi),P在⊙F內(nèi),Q在⊙F外,在直線l上的四點(diǎn)滿足
.
由消去y得
因?yàn)橹本l過橢圓C內(nèi)的右焦點(diǎn)F,
所以該方程的判別式恒成立.
設(shè)
由韋達(dá)定理,得
.
又因?yàn)椤?/span>F的直徑,
所以
.
可化為.
因?yàn)?/span>l與⊙O相切,所以⊙O的半徑,
所以.
所以
.
當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.
因此,直線l的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:雙曲線:的左、右焦點(diǎn)分別為,,過作直線交軸于點(diǎn).
(1)當(dāng)直線平行于的一條漸近線時(shí),求點(diǎn)到直線的距離;
(2)當(dāng)直線的斜率為時(shí),在的右支上是否存在點(diǎn),滿足?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由;
(3)若直線與交于不同兩點(diǎn)、,且上存在一點(diǎn),滿足(其中為坐標(biāo)原點(diǎn)),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a>0).
(1)求f(x)的單調(diào)增區(qū)間;
(2)當(dāng)x∈[0,π]時(shí),f(x)值域?yàn)?/span>[3,4],求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會(huì)開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進(jìn)站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個(gè)問題,決定對(duì)機(jī)動(dòng)車停車施行收費(fèi)制度,收費(fèi)標(biāo)準(zhǔn)如下:4小時(shí)內(nèi)(含4小時(shí))每輛每次收費(fèi)5元;超過4小時(shí)不超過6小時(shí),每增加一小時(shí)收費(fèi)增加3元;超過6小時(shí)不超過8小時(shí),每增加一小時(shí)收費(fèi)增加4元,超過8小時(shí)至24小時(shí)內(nèi)(含24小時(shí))收費(fèi)30元;超過24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).上述標(biāo)準(zhǔn)不足一小時(shí)的按一小時(shí)計(jì)費(fèi).為了調(diào)查該停車場一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車的停留時(shí)間(假設(shè)每輛車一天內(nèi)在該停車場僅停車一次),得到下面的頻數(shù)分布表:
(小時(shí)) | ||||||
頻數(shù)(車次) | 100 | 100 | 200 | 200 | 350 | 50 |
以車輛在停車場停留時(shí)間位于各區(qū)間的頻率代替車輛在停車場停留時(shí)間位于各區(qū)間的概率.
(1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計(jì)了停車時(shí)長與司機(jī)性別的列聯(lián)表:
男 | 女 | 合計(jì) | |
不超過6小時(shí) | 30 | ||
6小時(shí)以上 | 20 | ||
合計(jì) | 100 |
完成上述列聯(lián)表,并判斷能否有90%的把握認(rèn)為“停車是否超過6小時(shí)”與性別有關(guān)?
(2)(i)表示某輛車一天之內(nèi)(含一天)在該停車場停車一次所交費(fèi)用,求的概率分布列及期望;
(ii)現(xiàn)隨機(jī)抽取該停車場內(nèi)停放的3輛車,表示3輛車中停車費(fèi)用大于的車輛數(shù),求的概率.
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一座小島距離海岸線上最近的P點(diǎn)的距離是2km,從P點(diǎn)沿海岸正東12km處有一個(gè)城鎮(zhèn).假設(shè)一個(gè)人駕駛的小船的平均速度為,步行的速度為,時(shí)間t(單位:h)表示他從小島到城鎮(zhèn)的時(shí)間,x(單位:km)表示此人將船停在海岸處距P點(diǎn)的距離.設(shè),則( )
A.函數(shù)為減函數(shù)B.
C.當(dāng)時(shí),此人從小島到城鎮(zhèn)花費(fèi)的時(shí)間最少D.當(dāng)時(shí),此人從小島到城鎮(zhèn)花費(fèi)的時(shí)間不超過3h
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在區(qū)間內(nèi)有且只有一個(gè)實(shí)數(shù),使得成立,則稱函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).
(1)判斷函數(shù)在區(qū)間內(nèi)是否具有唯一零點(diǎn),說明理由:
(2)已知向量,,,證明在區(qū)間內(nèi)具有唯一零點(diǎn).
(3)若函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將數(shù)列中的所有項(xiàng)按第一行排3項(xiàng),以下每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:
……
記表中的第一列數(shù),,,…,構(gòu)成數(shù)列.
(1)設(shè),求m的值;
(2)若,對(duì)于任何,都有,且.求數(shù)列的通項(xiàng)公式.
(3)對(duì)于(2)中的數(shù)列,若上表中每一行的數(shù)按從左到右的順序均構(gòu)成公比為q()的等比數(shù)列,且,求上表中第k()行所有項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面為矩形,平面平面,,點(diǎn),分別是,的中點(diǎn).
(1)求證:平面;
(2)若與平面所成角的余弦值等于,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】班主任為了對(duì)本班學(xué)生的考試成績進(jìn)行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機(jī)抽取一個(gè)容量為7的樣本進(jìn)行分析.
(1)如果按照性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(寫出算式即可,不必計(jì)算出結(jié)果)
(2)如果隨機(jī)抽取的7名同學(xué)的數(shù)學(xué),物理成績(單位:分)對(duì)應(yīng)如下表:
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
數(shù)學(xué)成績 | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成績 | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望;
②根據(jù)上表數(shù)據(jù),求物理成績關(guān)于數(shù)學(xué)成績的線性回歸方程(系數(shù)精確到0.01);若班上某位同學(xué)的數(shù)學(xué)成績?yōu)?6分,預(yù)測該同學(xué)的物理成績?yōu)槎嗌俜郑?/span>
附:線性回歸方程,
其中,.
76 | 83 | 812 | 526 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com