【題目】已知橢圓G:=1(a>b>0)的離心率為,經(jīng)過左焦點(diǎn)F1(-1,0)的直線l與橢圓G相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,且點(diǎn)C在線段AB上.
(1)求橢圓G的方程;
(2)若|AF1|=|CB|,求直線l的方程.
【答案】(1);(2)或
【解析】
⑴設(shè)橢圓焦距為2c運(yùn)用離心率公式和的關(guān)系,即可得到橢圓方程
⑵由題意可知直線斜率存在,可設(shè)直線,代入橢圓方程,運(yùn)用韋達(dá)定理和向量共線的坐標(biāo)表示,解方程即可得到所求方程
(1)設(shè)橢圓焦距為2c,由已知可得,且c=1,
所以a=2,即有b2=a2-c2=3,
則橢圓G的方程為=1.
(2)由題意可知直線l斜率存在,可設(shè)直線l:y=k(x+1),由消y,
并化簡整理得(4k2+3)x2+8k2x+4k2-12=0.
由題意可知Δ>0,
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=,x1x2=.
因?yàn)辄c(diǎn)C,F1都在線段AB上,且|AF1|=|CB|,
所以,即(-1-x1,-y1)=(x2,y2-yC),
所以-1-x1=x2,即x1+x2=-1,
所以x1+x2==-1,
解得k2=,即k=±.
所以直線l的方程為y=(x+1)或y=-(x+1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,公園內(nèi)有一塊邊長為的等邊形狀的三角地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分,在上,在上.
(Ⅰ)設(shè),試用表示的函數(shù)關(guān)系式;
(Ⅱ)如果是灌溉水管,為節(jié)約成本希望它最短,的位置應(yīng)該在哪里?如果是參觀線路,則希望它最長,的位置又在哪里?請給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面PDC,E為棱PD的中點(diǎn).
(1)求證:PB∥平面EAC;
(2)求證:平面PAD⊥平面ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險(xiǎn),在原地等待營救.信息中心立即把消息告知在其南偏西30°,相距20海里的C處的乙船,現(xiàn)乙船朝北偏東的方向即沿直線CB前往B處救援,則等于 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{cn}的前n項(xiàng)和為Tn , 若數(shù)列{cn}滿足各項(xiàng)均為正項(xiàng),并且以(cn , Tn)(n∈N*)為坐標(biāo)的點(diǎn)都在曲線 上運(yùn)動(dòng),則稱數(shù)列{cn}為“拋物數(shù)列”.已知數(shù)列{bn}為“拋物數(shù)列”,則( )
A.{bn}一定為等比數(shù)列
B.{bn}一定為等差數(shù)列
C.{bn}只從第二項(xiàng)起為等比數(shù)列
D.{bn}只從第二項(xiàng)起為等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為,點(diǎn)(0,)是橢圓與y軸的一個(gè)交點(diǎn).
(1)求橢圓C的方程;
(2)直線x=2與橢圓交于P,Q兩點(diǎn),點(diǎn)P位于第一象限,A,B是橢圓上位于直線x=2兩側(cè)的動(dòng)點(diǎn);
①若直線AB的斜率為,求四邊形APBQ面積的取值范圍;
②當(dāng)點(diǎn)A,B在橢圓上運(yùn)動(dòng),且滿足∠APQ=∠BPQ時(shí),直線AB的斜率是否為定值?若是,求出此定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2008年至2014年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y關(guān)于的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2008年至2014年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2016年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1、C、D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為Q.
(1)證明:Q為BB1的中點(diǎn);
(2)若AA1=4,CD=2,梯形ABCD的面積為6,∠ADC=60°,求平面α與底面ABCD所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱臺(tái)ABCD﹣A1B1C1D1中,平面BCC1B1⊥平面ABCD,四邊形ABCD為平行四邊形,四邊形BCC1B1為等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.
(1)求證:BC1⊥平面ACC1;
(2)求直線BC1與平面ADD1A1所成的角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com