【題目】定義在上的函數(shù)滿足,.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)如果、、滿足,那么稱比更靠近.當(dāng)且時(shí),試比較和哪個(gè)更靠近,并說(shuō)明理由.
【答案】(1);
(2)當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
(3)比更靠近.
【解析】
試題分析:(1)兩邊求導(dǎo),可建立關(guān)于,的方程組,求得其值,即可得到解析式;(2)求導(dǎo),對(duì)的取值進(jìn)行分類討論,即可得到結(jié)論;(3)設(shè),,從而問(wèn)題等價(jià)于,通過(guò)對(duì)的取值范圍進(jìn)行分類討論,利用求導(dǎo)判斷單調(diào)性求極值,即可得到結(jié)論.
試題解析:(1),∴,即,又,∴,∴;(2)∵,
∴,
∴,①當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,②當(dāng)時(shí),由得,∴時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增,綜上,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(3)設(shè),,∵,∴在上為減函數(shù),又∵,
∴當(dāng)時(shí),,當(dāng)時(shí),,∵,,
∴在上為增函數(shù),又∵,∴時(shí),,∴在上為增函數(shù),∴,①當(dāng)時(shí),,
設(shè),則,∴在上為減函數(shù),
∴,∵,∴,∴,∴比更靠近,
②當(dāng)時(shí),,
設(shè),則,,∴在時(shí)為減函數(shù),
∴,∴在時(shí)為減函數(shù),∴,
∴,∴比更靠近,綜上:在,時(shí),比更靠近.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用A、B、C三種人工降雨方式分別對(duì)甲、乙、丙三地實(shí)施人工降雨,其實(shí)驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如下:
方式 | 實(shí)施地點(diǎn) | 大雨 | 中雨 | 小雨 | 模擬實(shí)驗(yàn)總次數(shù) |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請(qǐng)你根據(jù)人工降雨模擬實(shí)驗(yàn)的統(tǒng)計(jì)數(shù)據(jù):
(1)求甲、乙、丙三地都恰為中雨的概率;
(2)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只要是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)”為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和均值E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:方程表示焦點(diǎn)在y軸上的橢圓;命題q:橢圓(m>0)的離心率 e∈(,1),若p∨q為真,p∧q為假,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,曲線在點(diǎn)處的切線在兩坐標(biāo)軸上的截距之和為,求的值;
(2)若對(duì)于任意的及任意的,總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出定義:若(其中m為整數(shù)),則m叫做與實(shí)數(shù)x”親密的整數(shù)”記作{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)的四個(gè)說(shuō)法:
①函數(shù)在是增函數(shù);
②函數(shù)的圖象關(guān)于直線對(duì)稱;
③函數(shù)在上單調(diào)遞增
④當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),
其中說(shuō)法正確的序號(hào)是( )
A.①②③B.②③④C.①②④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某市效外景區(qū)內(nèi)一條筆直的公路經(jīng)過(guò)三個(gè)景點(diǎn)A、B、C.景區(qū)管委會(huì)又開發(fā)了風(fēng)景優(yōu)美的景點(diǎn)D.經(jīng)測(cè)量景點(diǎn)D位于景點(diǎn)A的北偏東30°方向且距A 8 km處,且位于景點(diǎn)B的正北方向,還位于景點(diǎn)C的北偏西75°方向 上,已知AB=5 km,AD>BD.
(1)景區(qū)管委會(huì)準(zhǔn)備由景點(diǎn)D向景點(diǎn)B修建一條筆直的公路,不考慮其他因素,求出這條公路的長(zhǎng);
(2)求∠ACD的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當(dāng)a=3時(shí),求A∩B;
(2)若a>0,且A∩B=,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com