3
0
(kx2+1)dx=12,則實數(shù)k=
 
考點:定積分
專題:導數(shù)的綜合應(yīng)用
分析:用k 表示被積函數(shù)的原函數(shù),計算定積分解方程即可.
解答: 解:
3
0
(kx2+1)dx=(
1
3
kx3+x
)|
 
3
0
=
1
3
33+3
=12,解答k=1;
故答案為:1.
點評:本題考查了函數(shù)定積分的計算,關(guān)鍵是正確找出被積函數(shù)的原函數(shù),得到關(guān)于k 的方程,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

不等式|2x-3|≥7的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2x-1+log2x的零點所在的一個區(qū)間是( 。
A、(
1
8
,
1
4
B、(
1
4
,
1
2
C、(
1
2
,1)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+1,x≤0
1
x
,x>0
,若函數(shù)y=f(x)-m有兩個不同的零點,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

所有正奇數(shù)如圖數(shù)表排列(圖中下一行中的數(shù)的個數(shù)是上一行中數(shù)的個數(shù)的2倍),則第m行中的第n個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(sinα,1),
b
=(cosα,2),α∈(0,
π
2

(Ⅰ)若
a
b
,求tanα的值;
(Ⅱ)在( I)的條件下,若cos(α+β)=
5
13
,β∈(0,
π
2
),求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(a,b),a,b滿足a2+b2≤1,則關(guān)于x的二次方程4x2+4bx+3a2=0有實數(shù)根的概率為(  )
A、
1
6
B、
1
3
C、
2
3
D、
5
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,定義域是R+且為增函數(shù)的是(  )
A、y=e-x
B、y=x
C、y=lnx
D、y=|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x1,y1,x2,y2滿足(y1+x12-3lnx12+(x2-y2+2)2=0,則(x1-x22+(y1-y22的最小值為( 。
A、8
B、2
2
C、2
D、
2

查看答案和解析>>

同步練習冊答案