【題目】已知函數(shù)為常數(shù)).

(Ⅰ)若,解不等式

(Ⅱ)若,當時,恒成立,求的取值范圍.

【答案】1,即時,不等式的解集為:

,即時,不等式的解集為:

,即時,不等式的解集為:

2.

【解析】

試題分析:()求得,所以,等價于,因為大小不能確定,所以分三種情況討論;()由題意可得時恒成立,當時,不等式顯然成立,當時,參變分離可得,即求得,而由時不等式恒成立,可知可得

試題解析:(,

,

,,

等價于,

,即時,不等式的解集為

,即時,不等式的解集為

,即時,不等式的解集為;

,

時恒成立, (

時,不等式()顯然成立;

時,,

,

又由時不等式恒成立,可知;

綜上所述,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓 的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點

(1)求橢圓的方程;

(2)已知的中點,是否存在定點,對于任意的都有,若存在,求出點

坐標;若不存在說明理由;

(3)若過點作直線的平行線交橢圓于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從月份的天中隨機挑選了天進行研究,且分別記錄了每天晝夜溫差與每天顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

溫差/

發(fā)芽數(shù)/

)從這天中任選天,記發(fā)芽的種子數(shù)分別為, ,求事件“, 均不小于”的概率.

)從這天中任選天,若選取的是日與日的兩組數(shù)據(jù),請根據(jù)這天中的另天的數(shù)據(jù),求出關(guān)于的線性回歸方程

)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的兩組檢驗數(shù)據(jù)的誤差均不超過顆,則認為得到的線性回歸方程是可靠的,試問()中所得的線性回歸方程是否可靠?

(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|(a∈R).
(1)當a=﹣1時,求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合 ,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若討論的單調(diào)性;

(Ⅱ)若過點可作函數(shù)圖象的兩條不同切線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ex﹣ax,a是常數(shù).
(Ⅰ)若a=1,且曲線y=f(x)的切線l經(jīng)過坐標原點(0,0),求該切線的方程;
(Ⅱ)討論f(x)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD⊥平面BCD,點E,F(EAD不重合)分別在棱AD,BD上,且EFAD.

求證:(1)EF∥平面ABC;

(2)ADAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和Sn滿足 ,且a1 , a2+6,a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=5,a2=13,an+2=5an+1﹣6an , 則使該數(shù)列的n項和Sn不小于2016的最小自然數(shù)n等于

查看答案和解析>>

同步練習冊答案