已知F1、F2是雙曲線(xiàn)
x2
16
-y2=1
的兩個(gè)焦點(diǎn),點(diǎn)M在雙曲線(xiàn)上,若△F1MF2的面積為1,則
MF1
MF2
的值為( 。
A、1
B、2
C、2
2
D、0
分析:由△F1MF2的面積為1可以推導(dǎo)出點(diǎn)M到x軸的距離,從而得出M到原點(diǎn)的距離,可知點(diǎn)M在以F1F2為直徑的圓上,得到
MF1
MF2
,最后得出
MF1
MF2
=0
解答:解:∵雙曲線(xiàn)
x2
16
-y2=1
,∴a=4,b=1,c=
17

設(shè)M(m,n)則△F1MF2的面積為1得:
1
2
×|n|×2c=1
,∴|n|=
1
17

代入雙曲線(xiàn)方程得:m2=
18×16
17
,
∴M到原點(diǎn)的距離
m 2+n 2
=
17

∴點(diǎn)M在以F1F2為直徑的圓x2+y2=17上
MF1
MF2

MF1
MF2
的值為0.
故選D.
點(diǎn)評(píng):本題考查雙曲線(xiàn)的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件,解答關(guān)鍵是利用兩點(diǎn)間的距離公式得出點(diǎn)M在以F1F2為直徑的圓上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若
|PF2|2
|PF1|
的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( 。
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是雙曲
x2
9
-
y2
16
=1
的左、右兩個(gè)焦點(diǎn),點(diǎn)P是雙曲線(xiàn)上一點(diǎn),且|PF1|.|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知F1、F2是雙曲數(shù)學(xué)公式的左、右兩個(gè)焦點(diǎn),點(diǎn)P是雙曲線(xiàn)上一點(diǎn),且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年陜西省西安市西工大附中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年陜西省西安市西工大附中高考數(shù)學(xué)四模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案