1.三進(jìn)制數(shù)2022(3)化為六進(jìn)制數(shù)為abc(6),則a+b+c=7.

分析 先將2022(3)轉(zhuǎn)化為“十進(jìn)制”數(shù),再轉(zhuǎn)化為6進(jìn)制數(shù)是142(6),從而可求a+b+c的值.

解答 解:“五進(jìn)制”數(shù)為2022(3)轉(zhuǎn)化為“十進(jìn)制”數(shù)為:2×33+0×32+2×31+2=62.
將十進(jìn)制數(shù)62轉(zhuǎn)化為6進(jìn)制數(shù):
62÷6=10…2,
10÷6=1…4,
1÷6=0…1,
∴將十進(jìn)制62化為6進(jìn)制數(shù)是142(6),
則a+b+c=7,
故答案為:7.

點(diǎn)評(píng) 本題考查進(jìn)位制,本題解題的關(guān)鍵是理解進(jìn)位制之間的轉(zhuǎn)化原則,注意數(shù)字的運(yùn)算不要出錯(cuò),本題是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為圓心且與直線mx-y-2m+1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為( 。
A.x2+y2=5B.x2+y2=3C.x2+y2=9D.x2+y2=7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知${(\sqrt{x}-\frac{2}{x^2})^n}(n∈{N^*})$的展開(kāi)式中第五項(xiàng)的系數(shù)與第三項(xiàng)的系數(shù)的比是10:1.
(1)求展開(kāi)式中各項(xiàng)系數(shù)的和;
(2)求展開(kāi)式中含x${\;}^{\frac{3}{2}}$的項(xiàng);
(3)求展開(kāi)式中系數(shù)最大的項(xiàng)和二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知正項(xiàng)等比數(shù)列{an}滿足:a7=a6+2a5,若存在兩項(xiàng)am、an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,則$\frac{1}{m}$+$\frac{4}{n}$的最小值為( 。
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{25}{6}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.將一張邊長(zhǎng)為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是( 。
A.$\frac{32}{3}$$\sqrt{6}$cm3B.$\frac{64}{3}$$\sqrt{6}$cm3C.$\frac{32}{3}$$\sqrt{2}$cm3D.$\frac{64}{3}$$\sqrt{2}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列求導(dǎo)運(yùn)算正確的是(  )
A.(log2x)′=$\frac{1}{xln2}$B.($\frac{cosx}{x}$)′=$\frac{xsinx-cosx}{x}$
C.(10x)′=10xlgeD.(x+$\sqrt{x}$)′=1-$\frac{1}{2\sqrt{x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖所示給出的是計(jì)算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$的值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( 。
A.i>1010B.i<1010C.i>1009D.i<1009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某數(shù)學(xué)興趣小組有3名男生和2名女生,從中任選出2名同學(xué)參加數(shù)學(xué)競(jìng)賽,那么對(duì)立的兩個(gè)事件為(  )
A.恰有1名女生與恰有2名女生B.至少有1名男生與全是男生
C.至少有1名男生與至少有1名女生D.至少有1名女生與全是男生

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知向量$\overrightarrow a$、$\overrightarrow b$是夾角為600的單位向量,$\overrightarrow c=3\overrightarrow a+2\overrightarrow b$,$\overrightarrow d=m\overrightarrow a-4\overrightarrow b$,(1)求$|{\overrightarrow a+3\overrightarrow b}|$;(2)當(dāng)m為何值時(shí),$\overrightarrow c$與$\overrightarrow d$平行?

查看答案和解析>>

同步練習(xí)冊(cè)答案