已知長方體AC1中,棱AB=BC=1,棱BB1=2,連結(jié)B1C,過B點作B1C的垂線交CC1于E,交B1C于F.
(1)求證:A1C⊥平面EBD;
(2)求三棱錐A-A1B1C的體積.
考點:棱柱、棱錐、棱臺的體積,直線與平面垂直的判定
專題:計算題,空間位置關(guān)系與距離
分析:(1)根據(jù)三垂線定理證線線垂直,再由線線垂直證明線面垂直;
(2)利用VA-A1B1C=VC-A1B1A,可求三棱錐A-A1B1C的體積.
解答: (1)證明:∵長方體A1C,∴A1B1⊥平面BC1,B1C為A1C在平面BC1上的射影,
∵BE⊥B1C,由三垂線定理得,A1C⊥BE,
同理A1C⊥BD
∵BE∩BD=B,∴A1C⊥面BDE.(6分)
(2)解:VA-A1B1C=VC-A1B1A=
1
3
SA1B1A•CB
=
1
3
1
2
•1•2•1
=
1
3
.(12分)
點評:本題考查線面垂直的判定及三棱錐A-A1B1C的體積,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若a6+a9>0,S15<0,則Sn取得最大值時n為( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:關(guān)于x的不等式x3-3|a|x+2≤0在(0,+∞)內(nèi)有解;q:只有一個實數(shù)x滿足不等式x2+2ax+2a≤0,若“p或q”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

擲甲、乙兩顆骰子,甲出現(xiàn)的點數(shù)為x,乙出現(xiàn)的點數(shù)為y,若令p(A)為|x-y|>1的概率,P(B)為xy≤x2+1的概率,試求P(A)+P(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校操場邊有一條小溝,溝沿是兩條長150米的平行線段,溝寬AB為2米,與溝沿垂直的平面與溝的交線是一段拋物線,拋物線的頂點為O,對稱軸與地面垂直,溝深2米,溝中水深1米.
(Ⅰ)求水面寬;
(Ⅱ)如圖1所示形狀的幾何體稱為柱體,已知柱體的體積為底面積乘以高,求溝中的水有多少立方米?
(Ⅲ)現(xiàn)在學(xué)校要把這條水溝改挖(不準填土)成截面為等腰梯形的溝,使溝的底面與地面平行,溝深不變,兩腰分別與拋物線相切(如圖2),問改挖后的溝底寬為多少米時,所挖的土最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x=my+1過橢圓C:
x2
a
+
y2
b
=1(a>b>0)的右焦點F2,且交橢圓于A,B兩點,已知橢圓的離心率為方程2x2+x-1=0的實根,F(xiàn)1為橢圓的左焦點,
(1)求證:△F1AB的周長為定值,并求出定值;
(2)當△F1AB的內(nèi)切圓半徑最大時,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+1|+2|x-1|.
(Ⅰ)解不等式f(x)<4;
(Ⅱ)若不等式f(x)≥|a+1|對任意的x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四邊形ABCD中,
AB
=
DC
=(-1,1),
1
|
BA
|
BA
-
1
|
BC
|
BC
=
3
|
CA
|
CA
,則
AB
CB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x-1)(x-2a-3)<0},函數(shù)y=lg
x-(a2+2)
2a-x
的定義域為集合B.
(1)若a=1,求集合A∩∁RB
(2)已知a>-1且“x∈A”是“x∈B”的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案