精英家教網 > 高中數學 > 題目詳情

已知平行四邊形ABCD的三個頂點的坐標分別是,則向量的坐標是(    ) 

A.            B.           C.           D.

 

【答案】

B

【解析】

試題分析:設出D,利用向量的坐標公式求出四邊對應的向量,據對邊平行得到向量共線,利用向量共線的充要條件列出方程組求出D的坐標。解:設D(x,y),因為平行四邊形ABCD的三個頂點坐標A,B,C為(-2,1)(-1,3),(3,4),那么結合,可知答案(1,2)//(3-x,4-y),即可知4-y-(2(3-x) )="0," ,聯立方程組可知,y=2,x=1,故向量的坐標為(3,-1),故選B.

考點:向量共線的坐標關系

點評:本題考查向量坐標的公式、考查向量共線的坐標形式的充要條件

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個頂點為D,再以OC、OD為鄰邊作平行四邊形,它的第四個頂點為H.
(1)若
OA
=
a
,
OB
=
b
OC
=
c
,
OH
=
h
,試用
a
b
、
c
表示
h

(2)證明:
AH
BC
;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示|
h
|

查看答案和解析>>

科目:高中數學 來源: 題型:

已知以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點D,E為BC邊上的中點,連結DE.

(1)如圖,求證:DE是⊙O的切線;

(2)連結OE、AE,當∠CAB為何值時,四邊形AOED是平行四邊形,并在此條件下求sin∠CAE的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個頂點為D,再以OC、OD為鄰邊作平行四邊形,它的第四個頂點為H.
(1)若
OA
=
a
,
OB
=
b
OC
=
c
,
OH
=
h
,試用
a
、
b
c
表示
h
;
(2)證明:
AH
BC

(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示|
h
|

查看答案和解析>>

科目:高中數學 來源:2009-2010學年遼寧省沈陽二中高一(下)期中數學試卷(必修4)(解析版) 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個頂點為D,再以OC、OD為鄰邊作平行四邊形,它的第四個頂點為H.
(1)若,試用表示
(2)證明:;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省肇慶市南豐中學高三(上)數學復習試卷C (必修4)(解析版) 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個頂點為D,再以OC、OD為鄰邊作平行四邊形,它的第四個頂點為H.
(1)若,試用表示;
(2)證明:;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示

查看答案和解析>>

同步練習冊答案
<pre id="lgcw4"><fieldset id="lgcw4"></fieldset></pre>