已知實數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=x3-x2+ax.
(1)當a=2時,求f (x)的極小值;
(2)若函數(shù)g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的極小值點與f (x)的極小值點相同.
求證:g(x)的極大值小于等于
【答案】分析:(1)求出函數(shù)的導數(shù),利用導數(shù)畫出表格,求出函數(shù)的極值
(2)根據(jù)f(x)的極值求出函數(shù)g(x)關(guān)系式從而證明函數(shù)g(x)的極大值小于
解答:解:(Ⅰ)解:當a=2時,f′(x)=x2-3x+2=(x-1)(x-2).
列表如下:
x(-∞,1)1(1,2)2(2,+∞)
f′(x)+-+
f(x)單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增
所以,f(x)的極小值為f(2)=.(6分)
.(5分)
(Ⅱ)解:f′(x)=x2-(a+1)x+a=(x-1)(x-a).
g′(x)=3x2+2bx-(2b+4)+=
令p(x)=3x2+(2b+3)x-1,
(1)當1<a≤2時,
f(x)的極小值點x=a,則g(x)的極小值點也為x=a,
所以p(a)=0,
即3a2+(2b+3)a-1=0,
即b=,
此時g(x)極大值=g(1)=1+b-(2b+4)=-3-b
=-3+=
由于1<a≤2,
   x2--=.(10分)
(2)當0<a<1時,
f(x)的極小值點x=1,則g(x)的極小值點為x=1,
由于p(x)=0有一正一負兩實根,不妨設(shè)x2<0<x1,
所以0<x1<1,
即p(1)=3+2b+3-1>0,
故b>-
此時g(x)的極大值點x=x1,
有g(shù)(x1)=x13+bx12-(2b+4)x1+lnx1
<1+bx12-(2b+4)x1
=(x12-2x1)b-4x1+1 (x12-2x1<0)
<-(x12-2x1)-4x1+1
=-x12+x1+1
=-(x1-2+1+(0<x1<1)
,<
綜上所述,g(x)的極大值小于等于.(14分)
點評:本題考查利用導函數(shù)來研究函數(shù)的極值.在利用導函數(shù)來研究函數(shù)的極值時,分三步①求導函數(shù),②求導函數(shù)為0的根,③判斷根左右兩側(cè)的符號,若左正右負,原函數(shù)取極大值;若左負右正,原函數(shù)取極小值
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

9、已知實數(shù)a滿足1<a<2,命題p:函數(shù)y=loga(2-ax)在[0,1]上是減函數(shù),命題q:“|x|<1”是“x<a”的充分不必要條件,則下面說法正確的是

①p或q為真命題;②p且q為假命題;③非p且q為真命題;④非p或非q為真命題、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a滿足0<a<2,直線l1:ax-2y-2a+4=0和l2:2x+a2y-2a2-4=0與兩坐標軸圍成一個四邊形.
(1)求證:無論實數(shù)a如何變化,直線l1、l2必過定點.
(2)畫出直線l1和l2在平面坐標系上的大致位置.
(3)求實數(shù)a取何值時,所圍成的四邊形面積最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

9、已知實數(shù)a、b滿足3a=10b,下列5個關(guān)系式:①0<a<b;②0<b<a;③a<b<0;④b<a<0;⑤a=b.其中不可能成立的關(guān)系有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a、b滿足3a=10b,下列5個關(guān)系式:①0<a<b;②0<b<a;③a<b<0;④b<a<0;⑤a=b=0,其中可能成立的關(guān)系有
②③⑤
②③⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=
1
3
x3-
a+1
2
x2+ax.
(1)當a=2時,求f (x)的極小值;
(2)若函數(shù)g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的極小值點與f (x)的極小值點相同.
求證:g(x)的極大值小于等于
5
4

查看答案和解析>>

同步練習冊答案