是否存在實(shí)數(shù),使得復(fù)數(shù)分別滿(mǎn)足下列條件,若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由。

(1)是實(shí)數(shù)(2是虛數(shù)(3是純虛數(shù)(4是零

解:,,

時(shí),是實(shí)數(shù);  時(shí),z是虛數(shù);

時(shí),z是純虛數(shù);       時(shí),等于零。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓Ω,它的離心率為
1
2
,一個(gè)焦點(diǎn)和拋物線y2=-4x的焦點(diǎn)重合,過(guò)直線l:x=4上一點(diǎn)M引橢圓Ω的兩條切線,切點(diǎn)分別是A,B.
(Ⅰ)求橢圓Ω的方程;
(Ⅱ)若在橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的點(diǎn)(x0,y0)處的橢圓的切線方程是
x0x
a2
+
y0y
b2
=1
.求證:直線AB恒過(guò)定點(diǎn)C;并出求定點(diǎn)C的坐標(biāo).
(Ⅲ)是否存在實(shí)數(shù)λ,使得|AC|+|BC|=λ|AC|•|BC|恒成立?(點(diǎn)C為直線AB恒過(guò)的定點(diǎn))若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分14分)

已知數(shù)列{an}和{bn}滿(mǎn)足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù)。

(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

(Ⅲ)設(shè)0<ab,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有

aSnb?若存在,求λ的取值范圍;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省高一5月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分14分)

已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.

(1)求圓的方程;

(2)設(shè)直線與圓相交于兩點(diǎn),求實(shí)數(shù)的取值范圍;

(3) 在(2)的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過(guò)點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年甘肅省高三第六次模擬考試數(shù)學(xué)理卷 題型:解答題

((本小題滿(mǎn)分12分)

數(shù)列滿(mǎn)足:

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列的前n項(xiàng)和分別為An、Bn,問(wèn)是否存在實(shí)數(shù),使得 為等差數(shù)列?若存在,求出的值;若不存在,說(shuō)明理由。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案