【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB= .D,E分別為線段AB,BC上的點,且CD=DE= ,CE=2EB=2.
(Ⅰ)證明:DE⊥平面PCD
(Ⅱ)求二面角A﹣PD﹣C的余弦值.
【答案】(Ⅰ)證明:∵PC⊥平面ABC,DE平面ABC,∴PC⊥DE,
∵CE=2,CD=DE= ,∴△CDE為等腰直角三角形,
∴CD⊥DE,∵PC∩CD=C,
DE垂直于平面PCD內(nèi)的兩條相交直線,
∴DE⊥平面PCD
(Ⅱ)由(Ⅰ)知△CDE為等腰直角三角形,∠DCE= ,
過點D作DF垂直CE于F,易知DF=FC=FE=1,又由已知EB=1,故FB=2,
由∠ACB= 得DF∥AC, ,故AC= DF= ,
以C為原點,分別以 , , 的方向為xyz軸的正方向建立空間直角坐標(biāo)系,
則C(0,0,0),P(0,0,3),A( ,0,0),E(0,2,0),D(1,1,0),
∴ =(1,﹣1,0), =(﹣1,﹣1,3), =( ,﹣1,0),
設(shè)平面PAD的法向量 =(x,y,z),由 ,
故可取 =(2,1,1),
由(Ⅰ)知DE⊥平面PCD,故平面PCD的法向量 可取 =(1,﹣1,0),
∴兩法向量夾角的余弦值cos< , >= =
∴二面角A﹣PD﹣C的余弦值為 .
【解析】(Ⅰ)由已知條件易得PC⊥DE,CD⊥DE,由線面垂直的判定定理可得;(Ⅱ)以C為原點,分別以 , , 的方向為xyz軸的正方向建立空間直角坐標(biāo)系,易得 , , 的坐標(biāo),可求平面PAD的法向量 ,平面PCD的法向量 可取 ,由向量的夾角公式可得.
【考點精析】根據(jù)題目的已知條件,利用直線與平面垂直的判定的相關(guān)知識可以得到問題的答案,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年雙十一期間,某電子產(chǎn)品銷售商促銷某種電子產(chǎn)品,該產(chǎn)品的成本為2元/件,通過市場分析,雙十一期間該電子產(chǎn)品銷售量y(單位:千件)與銷售價格x(單位:元)之間滿足關(guān)系式:y= +2x2﹣35x+170(其中2<x<8,a為常數(shù)),且已知當(dāng)銷售價格為3元/件時,該電子產(chǎn)品銷售量為89千件. (Ⅰ)求實數(shù)a的值及雙十一期間銷售該電子產(chǎn)品獲得的總利潤L(x);
(Ⅱ)銷售價格x為多少時,所獲得的總利潤L(x)最大?并求出總利潤L(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,g(x)=x2eax(a<0). (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對任意x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C的對邊分別是a,b,c且滿足(2a﹣c)cosB=bcosC.
(1)求角B的大。
(2)若△ABC的面積為 ,求a+c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知g(x)是定義在R上的奇函數(shù),且當(dāng)x<0時,g(x)=﹣ln(1﹣x),函數(shù)f(x)= ,若f(2﹣x2)>f(x),則x的取值范圍是( )
A.(﹣∞,﹣2)∪(1,+∞)
B.(﹣∞,1)∪(2,+∞)
C.(﹣2,1)
D.(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P﹣ABC中,底面ABC是邊長為6的正三角形,PA⊥底面ABC,且PB與底面ABC所成的角為 .
(1)求三棱錐P﹣ABC的體積;
(2)若M是BC的中點,求異面直線PM與AB所成角的大小(結(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 且x>0).若存在實數(shù)p,q(p<q),使得f(x)≤0的解集恰好為[p,q],則a的取值范圍是( )
A.(0, ]
B.(一∞, ]
C.(0, )
D.(一∞, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司設(shè)計如圖所示的環(huán)狀綠化景觀帶,該景觀帶的內(nèi)圈由兩條平行線段(圖中的AB,DC)和兩個半圓構(gòu)成,設(shè)AB=xm,且x≥80.
(1)若內(nèi)圈周長為400m,則x取何值時,矩形ABCD的面積最大?
(2)若景觀帶的內(nèi)圈所圍成區(qū)域的面積為 m2 , 則x取何值時,內(nèi)圈周長最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳疼減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”其大意為:“有一個人走了378里路,第一天健步行走,從第二天起腳疼每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了?”根據(jù)此規(guī)律,求后3天一共走多少里( )
A.156里
B.84里
C.66里
D.42里
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com