如圖2是一個算法的程序框圖,回答下面的問題;當輸入的值為3時,輸出的結果是
 

考點:程序框圖
專題:算法和程序框圖
分析:題中程序表示分段函數(shù),當自變量x小于5時輸出y=x2-1;而x≥5時輸出y=2x2+2.由此計算f(3)的值,即可得到x的值為3時,輸出的結果
解答: 解:(1)當輸入x的值為3時,
由于滿足“x<5”,計算y=x2-1=8
∴輸出的結果是8
故答案為:8.
點評:本題給出程序框圖,求輸出的y值,著重考查了程序框圖的理解和設計程序框圖解決實際問題,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1-cosx(0<x<
π
2
).數(shù)列{an}滿足:0<a1
π
2
,an+1=f(an),n∈N*
(Ⅰ)求證:0<an
π
2
(n∈N*);
(Ⅱ)求證:數(shù)列{an}是遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R),
(1)若函數(shù)y=f(x)在點(2,f(2))處的切線斜率為1,求a的值;
(2)在(1)的條件下,對任意t∈[1,2],函數(shù)g(x)=x3+x2[
m
2
+f′(x)]在區(qū)間(t,3)總存在極值,求m的取值范圍;
(3)若a=2,對于函數(shù)h(x)=(p-2)x-
p+2e
x
-3在[1,e]上至少存在一個x0使得h(x0)>f(x0)成立,求實數(shù)P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2
3
cos2x+2sin(π-x)cos(-x)+a-
3
(x∈R,a∈R,a為常數(shù)).
(Ⅰ)求函數(shù)f(x)的最小正周期及單調遞增區(qū)間;
(Ⅱ)先將函數(shù)y=f(x)的圖象向右平移
π
6
個單位,然后將得到函數(shù)圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到y(tǒng)=g(x)的圖象,若當x∈[
π
6
,
π
3
],g(x)的最小值為2,求a的值及函數(shù)y=g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的程序框圖中,若輸入S=0,則輸出S的值為
 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某廠生產某種產品x件的總成本c(x)=1200+
2
75
x3(萬元),已知產品單價的平方與產品件數(shù)x成反比,生產100件這樣的產品單價為50萬元,產量定為多少時總利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=
[x]
x
-a(x>0)有且僅有3個零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:△AOB中,∠AOB=90°,AO=h,OB=r,如圖所示,先將△AOB繞AO所在直線旋轉一周得到一個圓錐,再在該圓錐內旋轉一個長寬都為
2
,高DD1=1的長方體CDEF-C1D1E1F1.若該長方體的頂點C,D,E,F(xiàn)都在圓錐的底面上,且頂點C1,D1,E1,F(xiàn)1都在圓錐的側面上,則h+r的值至少應為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對應的邊分別為a,b,c,若a=9,b=6,A=60°,則sinB=
 

查看答案和解析>>

同步練習冊答案