已知點A、B分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)長軸的左、右端點,點C是橢圓短軸的一個端點,且離心率e=
6
3
,S△ABC=
3

(1)求橢圓方程;
(2)設直線l經(jīng)過橢圓的右焦點,且與橢圓相交于P、Q兩點,求線段PQ的中點到原點的距離等于
1
2
|PQ|
時的直線方程.
分析:(1)利用橢圓的離心率e=
6
3
,S△ABC=
3
,建立方程組,求出幾何量,即可得出橢圓的方程;
(2)分類討論,直線方程與橢圓方程聯(lián)立,利用OP⊥OQ,結合韋達定理,即可得到結論.
解答:解:(1)∵橢圓的離心率e=
6
3
,S△ABC=
3

c
a
=
6
3
1
2
×2a×b=
3

a=
3
,b=1,c=
2

∴所求橢圓的方程為
x2
3
+y2=1
;
(2)當直線l的斜率不存在時,l的方程為x=
2
,代入橢圓方程,可得y=±
3
3
,∴|PQ|=
2
3
3

而線段PQ的中點到原點的距離等于
2
,不合題意;
當直線l的斜率存在時,l的方程為y=k(x-
2
),則OP⊥OQ
直線方程與橢圓方程聯(lián)立,可得(1+3k2)x2-6
2
k2
x+6k2-3=0.
設P(x1,y1)、Q(x2,y2),則x1+x2=
6
2
k2
1+3k2
,x1x2=
6k2-3
1+3k2

∴x1x2+y1y2=
5k2-3
1+3k2
=0
∴k=±
15
5

∴直線l的方程為y=
15
5
(x-
2
)或y=-
15
5
(x-
2
).
點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查韋達定理的運用,考查分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•懷化三模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(
3
,
3
2
)
,離心率e=
1
2
,若點M(x0,y0)在橢圓C上,則點N(
x0
a
,
y0
b
)
稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:懷化三模 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(
3
,
3
2
)
,離心率e=
1
2
,若點M(x0,y0)在橢圓C上,則點N(
x0
a
y0
b
)
稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年湖南省懷化市高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

已知橢圓過點,離心率,若點M(x,y)在橢圓C上,則點稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年黑龍江省哈爾濱三中高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓過點,離心率,若點M(x,y)在橢圓C上,則點稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年黑龍江省哈爾濱三中高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓過點,離心率,若點M(x,y)在橢圓C上,則點稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

同步練習冊答案