精英家教網 > 高中數學 > 題目詳情
已知圓的方程x2+y2=25,點A為該圓上的動點,AB與x軸垂直,B為垂足,點P分有向線段BA的比λ=
3
2

(1)求點P的軌跡方程并化為標準方程形式;
(2)寫出軌跡的焦點坐標和準線方程.
(1)設點P(x,y)是軌跡上任意一點,點A的坐標是(x1,y1),點B的坐標是(x1,0),
∵點P分有向線段BA的比λ=
3
2
,
x=x1
y=
0+
3
2
y1
1+
3
2
,∴
x1=x
y1=
5
3
y
,
又點A在圓x2+y2=25上,∴x2+
25
9
y2
=25,
x2
25
+
y2
9
=1
(y≠0);
(2)由橢圓
x2
25
+
y2
9
=1
,知a2=25,b2=9,
∴c=4,則橢圓
x2
25
+
y2
9
=1
的焦點坐標是(-4,0),(4,0),準線方程是x=±
a2
c
25
4
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

方程(x+y)
x2+y2-4
=0
表示的曲線是(  )
A.兩條射線和一個圓B.一條直線和一個圓
C.一條射線和一個半圓D.兩條射線和一個半圓

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在平面直角坐標系中,A點坐標為(1,1),B點與A點關于坐標原點對稱,過動點P作x軸的垂線,垂足為C點,而點D滿足2
PD
=
PC
,且有
PA
PB
=2
,
(1)求點D的軌跡方程;
(2)求△ABD面積的最大值;
(3)斜率為k的直線l被(1)中軌跡所截弦的中點為M,若∠AMB為直角,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

平面上動點P到定點F(1,0)的距離比P到y(tǒng)軸的距離大1,則動點P的軌跡方程為( 。
A.y2=2xB.y2=4x
C.y2=2x或
y=0
x≤0
D.y2=4x或
y=0
x≤0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知一條曲線上的點到定點O(0,0)的距離是到定點A(3,0)距離的二倍,求這條曲線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知半徑為1的動圓與圓(x-5)2+(y+7)2=16外切,則動圓圓心的軌跡方程是(  )
A.(x-5)2+(y+7)2=15B.(x-5)2+(y+7)2=17
C.(x-5)2+(y+7)2=9D.(x-5)2+(y+7)2=25

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在△ABC中,已知頂點A(1,1),B(3,6)且△ABC的面積等于3,求頂點C的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知過點M(1,0)的直線交橢圓C:x2+3y2=6于A,B兩點.
(1)求弦AB中點的軌跡方程;
(2)若F為橢圓C的左焦點,求△ABF面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

兩圓的位置關系是(   )
A.相離B.相交C.內切D.外切

查看答案和解析>>

同步練習冊答案