設(shè)函數(shù)  f(x)=x2-bx+
c24

(1)若b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),求對(duì)任意x∈R,f(x)>0恒成立的概率.
(2)若b是從區(qū)間[0,8](3)任取得一個(gè)數(shù),c是從[0,6](4)任取的一個(gè)數(shù),求函數(shù)f(x)的圖象與x軸有交點(diǎn)的概率.
分析:(1)本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,f(x)>0要滿足判別式小于0,列舉出結(jié)果.
(2)利用幾何概型的計(jì)算概率的方法解決本題,關(guān)鍵要弄準(zhǔn)所求的隨機(jī)事件發(fā)生的區(qū)域的面積和事件總體的區(qū)域面積,通過(guò)相除的方法完成本題的解答.
解答:精英家教網(wǎng)解:(1)由點(diǎn)(b,c)組成的點(diǎn)共36tkh,
設(shè)A={任意x∈R,f(x)>0恒成立}即△=b2-c2<0,
∴b<c,A中包含基本事件15個(gè),
∴P(A)=
15
36
=
5
12
;
(2)(b,c)所在的區(qū)域Ω={(b,c)|0≤b≤8,0≤c≤6}
若使函數(shù)f(x)的圖象與x軸有交點(diǎn),
則b≥c≥0.
∴事件B={(b,c)|b>c,0≤b≤8,0≤c≤6}如圖,
∴P(B)=
48-
1
2
×6 2
48
=
5
8
點(diǎn)評(píng):本題考查等可能事件的概率,在解題過(guò)程中主要通過(guò)比例的方法計(jì)算概率的問(wèn)題,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,考查學(xué)生幾何圖形面積的計(jì)算方法,屬于基本題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求p的值;
(3)若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+1)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列三個(gè)命題:
①函數(shù)f(x)=(
12
)x
為R上的l高調(diào)函數(shù);
②函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍[2,+∞);
其中正確的命題是
②③
②③
(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無(wú)窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案