精英家教網 > 高中數學 > 題目詳情

【題目】我國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一直角邊為股,斜邊為弦.若a,bc為直角三角形的三邊,其中c為斜邊,則a2b2c2,稱這個定理為勾股定理.現將這一定理推廣到立體幾何中:在四面體OABC中,∠AOBBOCCOA90°,S為頂點O所對面的面積,S1,S2,S3分別為側面OABOAC,OBC的面積,則下列選項中對于S,S1,S2,S3滿足的關系描述正確的為(  )

A. S2SSS B.

C. SS1S2S3 D.

【答案】A

【解析】如圖,作ODBC于點D,連接AD,由立體幾何知識知,ADBC,從而S2(BC·AD)2BC2·AD2BC2·(OA2OD2) (OB2OC2OA2BC2·OD2(OB·OA)2(OC·OA)2(BC·OD)2.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓, 兩點,且圓心在直線.

1)求圓的方程;

2)若直線過點且被圓截得的線段長為,求的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面四個推理中,屬于演繹推理的是(  )

A. 觀察下列各式:72=49,73=343,74=2401,…,則72015的末兩位數字為43

B. 觀察,可得偶函數的導函數為奇函數

C. 在平面上,若兩個正三角形的邊長比為1:2,則它們的面積比為1:4,類似的,在空間中,若兩個正四面體的棱長比為1:2,則它們的體積之比為1:8

D. 已知堿金屬都能與水發(fā)生還原反應,鈉為堿金屬,所以鈉能與水發(fā)生反應

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】動點P到定點F(0,1)的距離比它到直線的距離小1,設動點P的軌跡為曲線C,過點F的直線交曲線C于A、B兩個不同的點,過點AB分別作曲線C的切線,且二者相交于點M

(Ⅰ)求曲線C的方程;

()求證:

(Ⅲ)△ABM的面積的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著經濟的發(fā)展,某城市的市民收入逐年增長,表1是該城市某銀行連續(xù)五年的儲蓄存款額(年底余額):

表1

年份x

2011

2012

2013

2014

2015

儲蓄存款額y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將表1的數據進行了處理,令tx-2 010,zy-5,得到表2:

表2

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(1)z關于t的線性回歸方程是________y關于x的線性回歸方程是________;

(2)用所求回歸方程預測到2020年年底,該銀行儲蓄存款額可達________千億元.

(附:線性回歸方程x,其中)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的定義域為,值域是.

(Ⅰ)求證:

(Ⅱ)求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本題分)

如圖, 所在的平面互相垂直,且

)求證:

)求直線與面所成角的大小的正弦值.

)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數其中是自然對數的底數, .

1)討論函數的單調性;

(2)當函數有兩個零點時,證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的上、下、左、右四個頂點分別為x軸正半軸上的某點滿足.

(1)求橢圓的方程;

(2)設該橢圓的左、右焦點分別為,點在圓上,且在第一象限,過作圓的切線交橢圓于,求證:△的周長是定值.

查看答案和解析>>

同步練習冊答案