如圖,分別為橢圓的左、右焦點,點P在橢圓上,是面積為的正三角形,則的值是________

答案:略
解析:

答案:

點金:因為、為橢圓的焦點,點P在橢圓上,且正的面積為,所以

= ,所以

∴點P的橫、縱坐標分別為,因為在橢圓上,所以有,又,∴

解得


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)與過A(2,0),B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
3
2

(1)求橢圓方程;
(2)設(shè)F1、F2分別為橢圓的左、右焦點,M為線段AF2的中點,求tan∠ATM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)如圖,邊長為a的正方形組成的網(wǎng)格中,設(shè)橢圓C1、C2、C3的離心率分別為e1、e2、e3,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,A(-1,0)、B(1,0)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長軸上兩點,C,D分別為橢圓的短軸和長軸的端點,P是CD上的動點,若
AP
BP
的最大值與最小值分別為3、
5
7


(1)求橢圓的離心率;
(2)如圖2,點F(1,0),動點Q、R分別在拋物線y2=4x及橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的實線部分上運動,且QR∥x軸,求△FQR的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三2月月考理科數(shù)學(xué) 題型:解答題

(本題滿分14分)如圖,已知為橢圓的右焦點,直線過點且與雙曲線的兩條漸進線分別交于點,與橢圓交于點.

 

 

(I)若,雙曲線的焦距為4。求橢圓方程。

(II)若為坐標原點),,求橢圓的離心率

 

 

查看答案和解析>>

同步練習冊答案