【題目】已知函數(shù)

1)討論的單調(diào)區(qū)間與極值;

2)已知函數(shù)的圖象與直線相交于,兩點(diǎn)(),證明:

【答案】1)分類討論,答案見解析;(2)證明見解析.

【解析】

1)求出導(dǎo)函數(shù),利用確定增區(qū)間,確定減區(qū)間,從而可得極值;

2)由(1)知只有在時(shí),函數(shù)的圖象與直線才有兩個(gè)交點(diǎn),由,可得,同時(shí)由消去參數(shù),并設(shè),都可用表示,要證不等式,只要證,即,只要證,引入新函數(shù).利用導(dǎo)數(shù)的知識可證.

解:(1,

①當(dāng)時(shí),,此時(shí)上單調(diào)遞增,無極值;

②當(dāng)時(shí),由,得.

所以時(shí),,單調(diào)遞減;

時(shí),單調(diào)遞增.

此時(shí)函數(shù)有極小值為,無極大值.

2)由題設(shè)可得,所以,

且由(1)可知,,.

,∴,同理,

,可知,所以.

,得,

作差得

設(shè)),由,得,

所以,即,

所以,

要證,只要證,即,只要證.

設(shè)),

.

所以單調(diào)遞增,.

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在幾何體中,如圖,四邊形為平行四邊形,,平面平面,平面,.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費(fèi)和年銷售量)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

46.6

563

6.8

289.8

1.6

1.469

108.8

表中

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?給出判斷即可,不必說明理由

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

3)已知這種產(chǎn)品的年利潤zx、y的關(guān)系為根據(jù)(2)的結(jié)果回答下列問題:

①年宣傳費(fèi)時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?

②年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大?

附:對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年冬奧會,北京市組織中學(xué)生開展冰雪運(yùn)動的培訓(xùn)活動,并在培訓(xùn)結(jié)束后對學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績,并作成如下莖葉圖:

(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;

(Ⅱ)從圖中考核成績滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;

(Ⅲ)記表示學(xué)生的考核成績在區(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效.請根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動是否有效,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)),

1)討論函數(shù)的單調(diào)區(qū)間;

2)若當(dāng)時(shí)的圖象總在函數(shù)的圖象的下方,求正實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面五邊形中,是梯形,,,,是等邊三角形.現(xiàn)將沿折起,連接、得如圖②的幾何體.

1)若點(diǎn)的中點(diǎn),求證:平面

2)若,在棱上是否存在點(diǎn),使得二面角的余弦值為?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,與坐標(biāo)軸分別交于AB兩點(diǎn),且經(jīng)過點(diǎn)Q1).

)求橢圓C的標(biāo)準(zhǔn)方程;

)若Pmn)為橢圓C外一動點(diǎn),過點(diǎn)P作橢圓C的兩條互相垂直的切線l1、l2,求動點(diǎn)P的軌跡方程,并求ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)當(dāng)時(shí),求的單調(diào)區(qū)間;

)若的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是菱形,,是棱的中點(diǎn),,在線段上,且.

(1)證明:;

(2)若,面,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案