【題目】已知函數(shù)
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若恒成立,求b-a的最小值.
【答案】(1)f(x)的單調(diào)增區(qū)間為(e,+∞),減區(qū)間為(0,e);(2).
【解析】分析:(Ⅰ)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)由題意得,可得函數(shù)單調(diào)增區(qū)間為,減區(qū)間為,即恒成立,,即,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性可得,即可得的最小值.
詳解:(Ⅰ)當(dāng)a=1時,f(x)=(2x2+x)lnx﹣3x2﹣2x+b(x>0).
f′(x)=(4x+1)(lnx﹣1),令f′(x)=0,得x=e.
x∈(0,e)時,f′(x)<0,∈(e,+∞)時,f′(x)>0.
函數(shù)f(x)的單調(diào)增區(qū)間為(e,+∞),減區(qū)間為(0,e);
(Ⅱ)由題意得f′(x)=(4x+1)(lnx﹣a),(x>0).
令f′(x)=0,得x=ea.x∈(0,e a)時,f′(x)<0,∈(ea ,+∞)時,f′(x)>0.
函數(shù)f(x)的單調(diào)增區(qū)間為(ea,+∞),減區(qū)間為(0,ea)
∴f(x)min=f(ea)=﹣e2a﹣ea+b,
∵f(x)≥0恒成立,∴f(ea)=﹣e2a﹣ea+b≥0,則b≥e2a+ea.∴b﹣a≥e2a+ea﹣a
令ea=t,(t>0),∴e2a+ea﹣a=t2+t﹣lnt,設(shè)g(t)=t2+t﹣lnt,(t>0),g′(t)=.
當(dāng)t∈(0,)時,g′(t)<0,當(dāng)時,g′(t)>0.
∴g(t)在(0,)上遞減,在(,+∞)遞增.
∴g(t)min=g()=.f(x)≥0恒成立,b﹣a的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選做題:幾何證明選講 如圖,ABCD是邊長為a的正方形,以D為圓心,DA為半徑的圓弧與以BC為直徑的半圓O交于點F,延長CF交AB于E.
(1)求證:E是AB的中點;
(2)求線段BF的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某海濱浴場海浪的高度y(米)是時間t的(0≤t≤24,單位:小時)函數(shù),記作y=f(t),下表是某日各時的浪高數(shù)據(jù):
t(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(m) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
經(jīng)長期觀測,y=f(t)的曲線可近似地看成是函數(shù)y=Acosωt+b的圖象.
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Acosωt+b的最小正周期T、振幅A及函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8時到晚上20時之間,有多長時間可供沖浪者進(jìn)行運(yùn)動?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,則_____.
【答案】
【解析】
分子分母同時除以,把目標(biāo)式轉(zhuǎn)為的表達(dá)式,代入可求.
,則
故答案為:.
【點睛】
本題考查三角函數(shù)的化簡求值,常用方法:(1)弦切互化法:主要利用公式, 形如等類型可進(jìn)行弦化切;(2)“1”的靈活代換和的關(guān)系進(jìn)行變形、轉(zhuǎn)化.
【題型】填空題
【結(jié)束】
15
【題目】如圖,正方體的棱長為1,為中點,連接,則異面直線和所成角的余弦值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P是橢圓 在第一象限上的動點,過點P引圓x2+y2=4的兩條切線PA、PB,切點分別是A、B,直線AB與x軸、y軸分別交于點M、N,則△OMN面積的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義“規(guī)范01數(shù)列”如下:共有項,其中項為0,項為1,且對任意,,,…,中0的個數(shù)不少于1的個數(shù).若,則不同的“規(guī)范01數(shù)列”共有( )
A. 14個 B. 13個 C. 15個 D. 12個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C: =1(y≥0),直線l:y=kx+1與曲線C交于A,D兩點,A,D兩點在x軸上的射影分別為點B,C.記△OAD的面積S1 , 四邊形ABCD的面積為S2 . (Ⅰ)當(dāng)點B坐標(biāo)為(﹣1,0)時,求k的值;
(Ⅱ)若S1= ,求線段AD的長;
(Ⅲ)求 的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)旅游局欲將一塊長20百米,寬10百米的矩形空地ABCD建成三星級鄉(xiāng)村旅游園區(qū),園區(qū)內(nèi)有一景觀湖EFG(如圖中陰影部分)以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標(biāo)系xOy,O為園區(qū)正門,園區(qū)北門P在y正半軸上,且PO=10百米。景觀湖的邊界線符合函數(shù)的模型。
(1)若建設(shè)一條與AB平行的水平通道,將園區(qū)分成面積相等的兩部分,其中湖上的部分建成玻璃棧道,求玻璃棧道的長度。
(2)若在景觀湖邊界線上一點M修建游船碼頭,使得碼頭M到正門O的距離最短,求此時M點的橫坐標(biāo)。
(3)設(shè)圖中點B為倉庫所在地,現(xiàn)欲在線段OB上確定一點Q建貨物轉(zhuǎn)運(yùn)站,將貨物從點B經(jīng)Q點直線轉(zhuǎn)運(yùn)至點P(線路PQ不穿過景觀湖),使貨物轉(zhuǎn)運(yùn)距離QB+PQ最短,試確定點P的位置。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com