某校為了解高一期末數(shù)學(xué)考試的情況,從高一的所有學(xué)生數(shù)學(xué)試卷中隨機(jī)抽取n份試卷進(jìn)行成績分析,得到數(shù)學(xué)成績頻率分布直方圖(如圖所示),其中成績在[50,60)的學(xué)生人數(shù)為6.
(Ⅰ)估計所抽取的數(shù)學(xué)成績的眾數(shù);
(Ⅱ)用分層抽樣的方法在成績?yōu)閇80,90)和[90,100]這兩組中共抽取5個學(xué)生,并從這5個學(xué)生中任取2人進(jìn)行點評,求分?jǐn)?shù)在[90,100]恰有1人的概率.
考點:古典概型及其概率計算公式,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(Ⅰ)由頻率分布直方圖及眾數(shù)的定義,估計所抽取的數(shù)學(xué)成績的眾數(shù)為最高矩形中點的橫坐標(biāo);
(Ⅱ)用分層抽樣得到在成績?yōu)閇80,90)和[90,100]這兩組中分別抽取3,2個學(xué)生,列出所有的基本事件,以及分?jǐn)?shù)在[90,100]恰有1人包含的基本事件個數(shù),進(jìn)而得到分?jǐn)?shù)在[90,100]恰有1人的概率.
解答: 解:(Ⅰ)由頻率分布直方圖可知:樣本的眾數(shù)為75.      
(Ⅱ)由頻率分布直方圖可得:第三組[50,60)的頻率:0.012×10=0.12,
所以n=6÷0.12=50,
∴第四組[80,90)的頻數(shù):0.024×10×50=12;
第五組[90,100]的頻數(shù):0.016×10×50=8;
用分層抽樣的方法抽取5人得:
第四組[80,90]抽。
12
20
×5=3
;第五組[90,100]抽。
8
20
×5=2
.      
記抽到第四組[80,90)的三位同學(xué)為A1,A2,A3,抽到第五組[90,100]的兩位同學(xué)為B1,B2
則從5個同學(xué)中任取2人的基本事件有:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),
(A2,A3),(A2,B1),(A2,B2),
(A3,B1),(A3,B2),(B1,B2),共10種.
其中分?jǐn)?shù)在[90,100]恰有1人有:
(A1,B1),(A1,B2),
(A2,B1),(A2,B2),
(A3,B1),(A3,B2),共6種.
∴所求概率:P=
6
10
=
3
5
點評:本題考查了利用頻率分布直方圖求眾數(shù)以及古典概型的概率問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(a,b)與點Q(1,0)在直線2x+3y-1=0的兩側(cè),且a>0,b>0,則
a-1
b
的取值范圍是( 。
A、(-∞,-3)
B、(-
1
3
,0)
C、(3,+∞)
D、(0,
1
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,e為自然對數(shù)的底數(shù),函數(shù)f(x)=
(-2x3+3ax2+6ax-4a2-6a)•ex,x≤1
[(6a-1)lnx+x+
a
x
+15a]•e,x>1

(Ⅰ)當(dāng)a=0時,求f(x)在x=e處的切線方程;
(Ⅱ)當(dāng)a<-1時,是否存在a使f(x)在[a,-a]上為減函數(shù),若存在,求實數(shù)a的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)f(x)=(m-2)x為增函數(shù);命題q:方程x2+2mx+2-m=0有實根;若p假q真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱可入肺顆粒物,2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境質(zhì)量標(biāo)準(zhǔn)》,其中規(guī)定:居民區(qū)中的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.某城市環(huán)保部門隨機(jī)抽取了一居民區(qū)去年40天的PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:
組別 PM2.5(微克/立方米) 頻數(shù)(天) 頻率
第一組 (0,15] 4 0.1
第二組 (15,30] 12 0.3
第三組 (30,45] 8 0.2
第四組 (45,60] 8 0.2
第五組 (60,75] 4 0.1
第六組 (75,90] 4 0.1
(Ⅰ)求該樣本的平均數(shù)的估計值,并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn),并說明理由;
(Ⅱ)從這40天中,隨機(jī)抽取2天,記這2天中該居民區(qū)PM2.5的24小時平均濃度符合《環(huán)境空氣質(zhì)量標(biāo)》的天數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

近期人們都在關(guān)注馬航MH370事件,某機(jī)構(gòu)通過問卷的方式,調(diào)查我市市民獲取MH370事件消息的澆,得到如下數(shù)據(jù):
獲取消息渠道 看電視 收聽廣播 其它渠道
男性 480 m 180
女性 384 210 90
按消息來源分層抽樣50人,其中屬于看電視的占27人.
(Ⅰ)求m的值;
(Ⅱ)從“其它渠道”中按性別比例抽取一個容量為6的樣本,再從這6人中抽取3人,求至少人是女性的概率;
(Ⅲ)現(xiàn)從(Ⅱ)中確定的樣本中每次都抽取一人,直到抽出所有女性為止,設(shè)所要抽取的人為x,求x的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a1+a3=10,a4+a6=
5
4
,求an和S4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-mx+m-1.m∈R                                                
(1)函數(shù)f(x)在區(qū)間(-1,1)上的最小值為g(m),求g(m)的解析式;                       
(2)求(1)中g(shù)(m)的最大值;
(3)若函數(shù)y=|f(x)|在[2,4]上單調(diào)遞增,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)常數(shù)a∈R.若(x2+
a
x
5的二項展開式中x7項的系數(shù)為-15,則a=
 

查看答案和解析>>

同步練習(xí)冊答案