已知變量x,y滿足
xy>0
-2≤x+y≤2
則z=-2x+y的取值范圍是( 。
A、(-2,2)
B、[-4,4]
C、[-2,2]
D、(-4,4)
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出
xy>0
-2≤x+y≤2
所對(duì)應(yīng)的可行域,變形目標(biāo)函數(shù),平移直線y=2x可得結(jié)論.
解答: 解:作出
xy>0
-2≤x+y≤2
所對(duì)應(yīng)的可行域(如圖陰影)
變形目標(biāo)函數(shù)可得y=2x+z,平移直線y=2x可知
當(dāng)直線經(jīng)過點(diǎn)A(2,0)時(shí),目標(biāo)函數(shù)取最小值-4,
當(dāng)直線經(jīng)過點(diǎn)B(-2,0)時(shí),目標(biāo)函數(shù)取最大值4,
但由xy>0可知,可行域不包含AB,
故z=-2x+y的取值范圍為(-4,4)
故選:D
點(diǎn)評(píng):本題考查簡單線性規(guī)劃,準(zhǔn)確作圖是解決問題的關(guān)鍵,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a是實(shí)數(shù),則“a2≠4”是“a≠2”的(  )
A、充要條件
B、既不充分也不必要條件
C、充分不必要條件
D、必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在大小為60°的二面角α-1-β中,已知AB?α,CD?β,且AB⊥l于B,CD⊥l于D,若AB=CD=1,BD=2,則AC的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等腰直角△BCP中,BC=PC=4,∠BCP=90°,A是邊BP的中點(diǎn),現(xiàn)沿CA把△ACP折起,使PB=4,如圖1所示.
(1)在三棱錐P-ABC中,求證:PA⊥平面ABC;
(2)在三棱錐P-ABC中,M,N,F(xiàn)分別是PC,BC,AC的中點(diǎn),Q是MN上任意一點(diǎn),求證:FQ∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
2
x,g(x)=log
1
2
x,記函數(shù)h(x)=
g(x),f(x)≤g(x)
f(x),f(x)>g(x)
,則函數(shù)F(x)=h(x)+x-5所有零點(diǎn)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一長為a的木梁,它的兩端懸掛在兩條互相平行、長度都為b的繩索下,木梁處于水平位置,如果把木梁繞它的中軸轉(zhuǎn)動(dòng)一個(gè)角度φ,問木梁升高多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S11=22,則3a1+a21=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

n=1
1
(n+1)(n+2)(n+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足an=2an-1+3且a1=1,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案