【題目】給出下列命題:①已知 ,“ 且 ”是“ ”的充分條件;
②已知平面向量 , 是“ ”的必要不充分條件;
③已知 ,“ ”是“ ”的充分不必要條件;
④命題 “ ,使 且 ”的否定為 “ ,都有 且 ”.其中正確命題的個數(shù)是( )
A.0
B.1
C.2
D.3
【答案】C
【解析】①已知 ,“ 且 ”能夠推出“ ”,“ ”不能推出“ ”,本選項正確;
②已知平面向量 , “ ”不能推出“ ”,本選項不正確;
③已知 ,“ ”是“ ”的充分不必要條件,正確;
④命題 “ ,使 且 ”的否定為 “ ,都有 或 ”本選項不正確.
正確的個數(shù)為2.
故答案為:C
(1)當a > 1 且 b > 1 時,可以推出 a b > 1,但是 a b > 1不能推出 a > 1 且 b > 1,可判斷是正確的;
(2)結合平面向量的幾何性質(zhì)可知模都大于1,并不能推出向量的和的模大于1,故不正確;
(3)a,b的平方和不小于1,則a,b的絕對值的和也不小于1,正確;
(4)且命題的否定一定是用或連接,特稱命題的否定是全稱命題.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線 的參數(shù)方程為 ( 為參數(shù)),直線 的參數(shù)方程為 ( 為參數(shù)).
(Ⅰ)求曲線 和直線 的普通方程;
(Ⅱ)若點 為曲線 上一點,求點 到直線 的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的程序框圖表示求算式“2×3×5×9×17×33”之值,則判斷框內(nèi)不能填入( 。
A.k≤33
B.k≤38
C.k≤50
D.k≤65
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】博鰲亞洲論壇2015年會員大會于3月27日在海南博鰲舉辦,大會組織者對招募的100名服務志愿者培訓后,組織一次 知識競賽,將所得成績制成如右頻率分布直方圖(假定每個分數(shù)段內(nèi)的成績均勻分布),組織者計劃對成績前20名的參賽者進行獎勵.
(1)試確定受獎勵的分數(shù)線;
(2)從受獎勵的20人中利用分層抽樣抽取5人,再從抽取的5人中抽取2人在主會場服務,試求2人成績都在90分以上的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的兩個焦點和短軸的兩個頂點構成的四邊形是一個正方形,且其周長為 .
(I)求橢圓C的方程;
(II)設過點B(0,m)(m>0)的直線 與橢圓C相交于E,F(xiàn)兩點,點B關于原點的對稱點為D,若點D總在以線段EF為直徑的圓內(nèi),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解甲、乙兩校高三年級學生某次期末聯(lián)考地理成績情況,從這兩學校中分別隨機抽取30名高三年級的地理成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖所示:
(1)若乙校高三年級每位學生被抽取的概率為0.15,求乙校高三年級學生總人數(shù);
(2)根據(jù)莖葉圖,分析甲、乙兩校高三年級學生在這次聯(lián)考中哪個學校地理成績較好?(不要求計算,要求寫出理由);
(3)從樣本中甲、乙兩校高三年級學生地理成績不及格(低于60分為不及格)的學生中隨機抽取2人,求至少抽到一名乙校學生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)在處的切線方程;
(2)令,討論函數(shù)的零點的個數(shù);
(3)若,正實數(shù)滿足,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com