【題目】蘭州一中在世界讀書日期間開展了“書香校園”系列讀書教育活動。為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”,低于60分鐘的學生稱為“非讀書迷”。
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 |
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書迷”與性別有關?
(2)利用分層抽樣從這100名學生的“讀書迷”中抽取8名進行集訓,從中選派2名參加蘭州市讀書知識比賽,求至少有一名男生參加比賽的概率。
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)表格見解析, 有99%的把握認為“讀書迷”與性別有關;(2)
【解析】試題分析:(1)根據(jù)題意完成列聯(lián)表即可,再利用所給公式和臨界值表進行判定;(2)先利用分層抽樣確定人數(shù),再利用古典概型的概率公式進行求解.
試題解析:(1)2×2列聯(lián)表如下:
非讀書迷 | 讀書迷” | 合計 | |
男 | 40 | 15 | 55 |
女 | 20 | 25 | 45 |
合計 | 60 | 40 | 100 |
易知的觀測值
因為,所以有99%的把握認為“讀書迷”與性別有關.
(2)利用分層抽樣抽取的8名“讀書迷”中有男生3名,女生5名,分別設男生和女生為、, 設從8名“讀書迷”中選派2名,至少選派一名男生參加比賽的事件為 則基本事件共有28種,其中至少選派一名男生參加比賽的事件有18種,
所以, 所以,至少有一名男生參加比賽的概率為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0, )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間和對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實數(shù)的取值范圍;
(3)證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在統(tǒng)計學中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學的某刻考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數(shù)學偏差(單位:分)與物理偏差(單位:分)之間的關系進行偏差分析,決定從全班40位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數(shù)據(jù)如表:
(1)已知與之間具有線性相關關系,求關于的線性回歸方程;
(2)若這次考試該班數(shù)學平均分為120分,物理平均分為92,試預測數(shù)學成績126分的同學的物理成績.
參考公式: ,
參考數(shù)據(jù): ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了了解該校學生對于某項運動的愛好是否與性別有關,通過隨機抽查110名學生,得到如下的列聯(lián)表:
喜歡該項運動 | 不喜歡該項運動 | 總計 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由公式,算得
附表:
0.025 | 0.01 | 0.005 | |
5.024 | 6.635 | 7.879 |
參照附表,以下結(jié)論正確的是( )
A. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
B. 在犯錯語的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
C. 有99%以上的把握認為“愛好該項運動與性別無關”
D. 有99%以上的把握認為“愛好該項運動與性別有關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于x的函數(shù) .
(1)如果函數(shù) ,求b、c;
(2)設當x∈( ,3)時,函數(shù)y=f(x)﹣c(x+b)的圖象上任一點P處的切線斜率為k,若k≤2,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位,得到函數(shù)的圖象,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M,N分別是BC1 , CD1的中點,則下列說法錯誤的是( )
A.MN與CC1垂直
B.MN與AC垂直
C.MN與BD平行
D.MN與A1B1平行
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),函數(shù)f(x)= ﹣m| + |+1,x∈[﹣ , ],m∈R.
(1)當m=0時,求f( )的值;
(2)若f(x)的最小值為﹣1,求實數(shù)m的值;
(3)是否存在實數(shù)m,使函數(shù)g(x)=f(x)+ m2 , x∈[﹣ , ]有四個不同的零點?若存在,求出m的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com