已知f(2x+1)=5x+數(shù)學公式,那么f(2)的值是


  1. A.
    3
  2. B.
    2
  3. C.
    1
  4. D.
    0
A
分析:法一:利用換元法,先求f(x),然后代入可求f(2)
法二:令2x+1=2可得x=,把x=代入到已知函數(shù)中可求f(2)
解答:法一:令t=2x+1,則x=
∵f(2x+1)=5x+,
∴f(t)==
∴f(2)=3
故選A
法二:令2x+1=2可得x=
∵f(2x+1)=5x+
∴f(2)=5×=3
故選A
點評:本題主要考查了利用換元法求解函數(shù)的解析式,注意法二中整體思想在解題中的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(2x+1)=x2-2x,則f(2)=
-
3
4
-
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(2x+1)=x2+x,則f(x)=
1
4
x2-
1
4
1
4
x2-
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(2x+1)定義域為[2,3],則y=f(x+1)的定義域是
[4,6]
[4,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求復合函數(shù)定義域.
(1)若f(x)定義域是[0,2],則f(2x-1)定義域是
[
1
2
,
3
2
]
[
1
2
3
2
]

(2)若f(x2-2x+2)定義域為[0,2],則f(x)定義域是
[1,2]
[1,2]

(3)已知f(2x-1)定義域為[-1,5],則f(2-5x)定義域是
[-
7
5
,1]
[-
7
5
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知f(x)=
11+x
,(x∈R,且x≠-1),g(x)=x2+2x,(x∈R),求f(3),f[g(3)]的值.
(2)已知f(2x+1)=x2-2x,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案