已知函數(shù)f(x)是偶函數(shù),且x≥0時(shí),f(x)=sin2x,則f(-
13π
6
)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用x≥0時(shí),f(x)=sin2x,可得f(
13π
6
)
=sin
13π
3
.由于函數(shù)f(x)是偶函數(shù),可得f(-
13π
6
)=f(
13π
6
)
.即可得出.
解答: 解:∵x≥0時(shí),f(x)=sin2x,
f(
13π
6
)
=sin
13π
3
=sin
π
3
=
3
2

∵函數(shù)f(x)是偶函數(shù),
∴f(-
13π
6
)=f(
13π
6
)
=
3
2

故答案為:
3
2
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性、三角函數(shù)求值、誘導(dǎo)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(2x+1)n=a0+a1x+a2x2+…+anxn中令x=0,就可以求出常數(shù)項(xiàng),即1=a0.請(qǐng)你根據(jù)其中蘊(yùn)含的解題方法研究下列問題;若ex=a0+a1x+a2x2+a3x3+a4x4+…+anxn+…,且n≥2,n∈N,則a1+
a2
a0
+
a3
a1
+…+
an
an-2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用弧度制表示頂點(diǎn)在原點(diǎn),始邊重合x軸非負(fù)半軸,終邊落在下圖中陰影部分內(nèi)的角的集合(包括邊界).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求導(dǎo):f(x)=
a+blnx
x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<β<
π
2
<α<
4
,cosα(
π
4
-α)=
3
5
,sin(
4
+β)=
5
13
,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知(
3
x
-
3x
)n
的展開式的各項(xiàng)系數(shù)之和等于(4
3x
-
1
5x
)5
展開式中的常數(shù)項(xiàng),求n;
(2)求(1-x)3+(1-x)4+…+(1-x)10展開式中x2項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x2+1
x2-1
的值域?yàn)?div id="omykoiu" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

首項(xiàng)為正數(shù)的數(shù)列{an}滿足an+1=
1
4
(
a
2
n
+3)
,若數(shù)列{an}是遞增數(shù)列,則a1的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,2),拋物線C1:y2=ax(a>0)的焦點(diǎn)為F,射線FA與拋物線C相交于點(diǎn)M,與其準(zhǔn)線相交于點(diǎn)N,若|FM|:|MN|=1:
5
,則a的值等于( 。
A、
1
4
B、
1
2
C、1
D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案