在平面直角坐標(biāo)系中,已知定點(diǎn)A(-2,0)、B(2,0),異于A、B兩點(diǎn)的動(dòng)點(diǎn)P滿(mǎn)足,其中k1、k2分別表示直線(xiàn)AP、BP的斜率.

(Ⅰ)求動(dòng)點(diǎn)P的軌跡E的方程;

(Ⅱ)若N是直線(xiàn)x=2上異于點(diǎn)B的任意一點(diǎn),直線(xiàn)AN與(I)中軌跡E交予點(diǎn)Q,設(shè)直線(xiàn)QB與以NB為直徑的圓的一個(gè)交點(diǎn)為M(異于點(diǎn)B),點(diǎn)C(1,0),求證:|CM|·|CN| 為定值.

 

【答案】

(Ⅰ)(Ⅱ)先得到直線(xiàn)MN過(guò)定點(diǎn)C(1,0)

【解析】

試題分析:解:(Ⅰ)設(shè),由得  ,其中,

整理得點(diǎn)的軌跡方程為.           

(Ⅱ)設(shè)點(diǎn)(),

設(shè),則,,

從而.                             

,直線(xiàn)斜率,

直線(xiàn)與以為直徑的圓的另一個(gè)交點(diǎn)為,.

方程為,即,過(guò)定點(diǎn)      

定值證法一:即三點(diǎn)共線(xiàn),又是以為直徑的圓的切線(xiàn),由切割線(xiàn)定理可知,,為定值.                    

定值證法二:直線(xiàn):,直線(xiàn):,  

聯(lián)立得,,

,為定值.

考點(diǎn):橢圓的方程;直線(xiàn)與橢圓的位置關(guān)系

點(diǎn)評(píng):關(guān)于曲線(xiàn)的大題,第一問(wèn)一般是求出曲線(xiàn)的方程,第二問(wèn)常與直線(xiàn)結(jié)合起來(lái),當(dāng)涉及到交點(diǎn)時(shí),常用到根與系數(shù)的關(guān)系式:)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線(xiàn)C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱(chēng)點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫(xiě)出所有正確命題的編號(hào)).
①存在這樣的直線(xiàn),既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果k與b都是無(wú)理數(shù),則直線(xiàn)y=kx+b不經(jīng)過(guò)任何整點(diǎn)
③直線(xiàn)l經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
④直線(xiàn)y=kx+b經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng)的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線(xiàn)y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線(xiàn)的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案