精英家教網(wǎng)如圖,△ABC內(nèi)接于⊙O,∠C=40°,則∠ABO=
 
度.
分析:已知了∠ACB的度數(shù),易求得同弧所對(duì)的圓心角∠AOB的度數(shù);等腰△AOB中,根據(jù)三角形內(nèi)角和定理即可求得底角∠ABO的度數(shù).
解答:解:△AOB中,OA=OB,
∴∠ABO=
1
2
(180°-∠AOB);
又∵∠AOB=2∠C=80°,
∴∠ABO=50°.
故答案為:50.
點(diǎn)評(píng):此題主要考查的是圓周角定理:同弧所對(duì)的圓周角是圓心角的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,AB=2,BC=1,設(shè)AE與平面ABC所成的角為θ,且tanθ=
3
2
,四邊形DCBE為平行四邊形,DC⊥平面ABC.
(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點(diǎn)M,使得MO∥平面ADE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC內(nèi)接于⊙O,AB=AC,直線(xiàn)MN切⊙O于點(diǎn)C,BE∥MN交AC于點(diǎn)E.若AB=6,BC=4,求AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于圓柱的底面圓O,AB是圓O的直徑,AB=2,BC=1,DC、EB是兩條母線(xiàn),且 tan∠EAB=
3
2

(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點(diǎn)M,使得MO∥平面ADE,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•沈陽(yáng)二模)選修4-1:幾何證明選講
如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,PA是過(guò)點(diǎn)A的直線(xiàn),且∠PAC=∠ABC.
(1)求證:PA是⊙O的切線(xiàn);
(2)如果弦CD交AB于點(diǎn)E,AC=8,CE:ED=6:5,AE:EB=2:3,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:△ABC內(nèi)接于⊙O,AB=AC,直線(xiàn)MN切⊙O于點(diǎn)C,BE∥MN交AC于點(diǎn)E,若AB=6,BC=4,則AE的長(zhǎng)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案