某汽車(chē)租賃公司為了調(diào)查A,B兩種車(chē)型的出租情況,現(xiàn)隨機(jī)抽取這兩種車(chē)型各50輛,分別統(tǒng)計(jì)了每輛車(chē)在某個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表:
A型車(chē)                                 
出租天數(shù) 3 4 5 6 7
車(chē)輛數(shù) 3 30 5 7 5
B型車(chē)
出租天數(shù) 3 4 5 6 7
車(chē)輛數(shù) 10 10 15 10 5
根據(jù)上面的統(tǒng)計(jì)數(shù)據(jù),判斷這兩種車(chē)型在本星期內(nèi)出租天數(shù)的方差的大小關(guān)系為( 。
A、SA>SB
B、SA<SB
C、SA=SB
D、無(wú)法判斷
考點(diǎn):極差、方差與標(biāo)準(zhǔn)差
專(zhuān)題:概率與統(tǒng)計(jì)
分析:由數(shù)據(jù)的離散程度可以看出哪個(gè)標(biāo)準(zhǔn)差較大
解答: 解:由數(shù)據(jù)的離散程度可以看出,B型車(chē)在本星期內(nèi)出租天數(shù)的標(biāo)準(zhǔn)差較大.
故選:B.
點(diǎn)評(píng):熟練掌握標(biāo)準(zhǔn)差的意義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-4,點(diǎn)A1(x1,0),過(guò)點(diǎn)A1作x軸的垂線交拋物線C:y=f(x)于點(diǎn)B1,過(guò)B1作拋物線C:y=f(x)的切線與x軸交于點(diǎn)A2(x2,0),過(guò)點(diǎn)A2作x軸的垂線交拋物線C:y=f(x)于點(diǎn)B2,過(guò)點(diǎn)B2作拋物線C:y=f(x)的切線交x軸于點(diǎn)A3(x3,0)┉依次下去,得到x1、x2、x3┉,xn,其中x1>0,
(1)求xn+1與xn的關(guān)系式;
(2)若x1>2,記an=lg
xn+2
xn-2
,證明數(shù)列{an}是等比數(shù)列;
(3)若x1=
22
9
,求數(shù)列{nan}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程.
極坐標(biāo)系與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知直線l的參數(shù)方程為
x=2+tcosα
y=tsinα
(t為參數(shù)).曲線C的極坐標(biāo)方程為ρsin2θ=8cosθ.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),與x軸的交點(diǎn)為F,求
1
|AF|
+
1
|BF|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一張直角三角形紙片的兩直角邊上各取一點(diǎn),分別沿斜邊中點(diǎn)與這兩點(diǎn)的連線剪去兩個(gè)三角形,剩下的部分是如圖所示的直角 梯形,其中三邊長(zhǎng)分別為2、4、3,則原直角三角形紙片的斜邊長(zhǎng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱錐P-ABC底面的三個(gè)頂點(diǎn)A、B、C在球O的同一個(gè)大圓上,點(diǎn)P在球面上,如果VP-ABC=
3
4
,則球O的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則此幾何體的體積是(  )
A、
20
3
π
B、6π
C、
10
3
π
D、
16
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)A、B分別是x軸、y軸上兩個(gè)動(dòng)點(diǎn),又有一定點(diǎn)M(3,4),則|MA|+|AB|+|BM|的最小值是( 。
A、10B、11C、12D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
m
-y2=1
的一條漸近線和圓x2+y2-4x+3=0相切,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=x3+1在點(diǎn)(-1,0)處的切線方程為( 。
A、3x+y+3=0
B、3x-y+3=0
C、3x-y=0
D、3x-y-3=0

查看答案和解析>>

同步練習(xí)冊(cè)答案