已知雙曲線的離心率為,頂點與橢圓的焦點相同,那么雙曲線的焦點坐標為_____;漸近線方程為_________.
.

試題分析:由于雙曲線的頂點坐標為,橢圓的焦點坐標為,則有
設雙曲線的焦距為,則,故雙曲線是焦點坐標為,,故雙曲線的漸近線方程為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,)在橢圓C上.

(I)求橢圓C的方程;
(II)如圖,動直線與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且,,四邊形面積S的求最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:的離心率等于,點P在橢圓上。
(1)求橢圓的方程;
(2)設橢圓的左右頂點分別為,過點的動直線與橢圓相交于兩點,是否存在定直線,使得的交點總在直線上?若存在,求出一個滿足條件的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓的左、右焦點分別為F1(-1,0),F(xiàn)2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點.
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足,為坐標原點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,左焦點為
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與曲線交于不同的、兩點,且線段的中點在圓 上,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知得頂點、分別是離心率為的圓錐曲線的焦點,頂點在該曲線上,一同學已正確地推得,當時有 ,類似地,當時,有               .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,設橢圓的左右焦點分別為,過焦點的直線交橢圓于兩點,若的內切圓的面積為,設兩點的坐標分別為,則值為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

F1F2分別是橢圓的左、右焦點,P為橢圓上任一點,點M的坐標為(6,4),則的最大值為__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設e是橢圓=1的離心率,且e∈(,1),則實數(shù)k的取值范圍是 (  )
A.(0,3)B.(3,)
C.(0,3)∪(,+∞)D.(0,2)

查看答案和解析>>

同步練習冊答案