已知ABCD是矩形,AB=a,AD=b,PA^平面ABCDPA=2c,QPA的中點(diǎn).求

    1QBD的距離;

    2P到平面BQD的距離.

答案:
解析:

如圖,解:(1)在矩形ABCD中,作AE^BDE,連結(jié)QE.∵ QA^平面ABCD,由三垂線定理得QE^BE,∴ QE的長是QBD的距離.在矩形ABCD中,AB=a,AD=b,∴ AE=在RtDQAE中,QA=PA=c,

    ∴ .∴ QBD的距離為

(2)∵ QPA中點(diǎn),故P與平面BQD的距離=A與平面BQD的距離AHVQ-ABD=abc.但

    ∴ ,∴ AH=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、如圖,已知ABCD是矩形,E是以CD為直徑的半圓周上一點(diǎn),且平面CDE⊥平面ABCD,求證:CE⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點(diǎn),PA⊥平面ABCD.
(Ⅰ)求證:DF⊥平面PAF;
(Ⅱ)在棱PA上找一點(diǎn)G,使EG∥平面PED,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 如圖,已知ABCD是矩形,PA⊥平面ABCD,M,N分別是AB,PC的中點(diǎn),PA=2,PD=AB,且平面MND⊥平面PCD.
(1)求證:MN⊥AB;
(2)求二面角P-CD-A的大�。�
(3)求三棱錐D-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是矩形,M、N分別是PC、PD上的點(diǎn),MN⊥PC,且PA⊥平面ABCD,AN⊥PD,求證:AM⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江二模)已知ABCD是矩形,AD=4,AB=2,E、F分別是AB、BC 的中點(diǎn),PA丄面ABCD.
(1)求證:PF丄DF;
(2)若PD與面ABCD所成角為300在PA上找一點(diǎn) G,使EG∥面PFD,并求出AG的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘