已知橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,斜率為且過橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),共線.設(shè)為橢圓上任意一點(diǎn),且,證明為定值.

為定值,定值為


解析:

由題意可知,所以橢圓可化為

設(shè),由已知得,

在橢圓上,

. 、

由(Ⅰ)知,

,,代入①得

為定值,定值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),
OA
+
OB
a
=(3,-1)共線.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)M為橢圓上任意一點(diǎn),且
OM
OA
OB
(λ,μ∈R)
,證明λ22為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長為1,動點(diǎn)M(2,t)(t>0)在直線x=
a2c
(a為長半軸,c為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標(biāo)原點(diǎn),斜率為1且過橢圓右焦點(diǎn)F(2,0)的直線交橢圓于A,B兩點(diǎn),
OA
+
OB
a
=(3,-1)
共線,則該橢圓的長半軸長為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長為1,動點(diǎn)M(2,t)(t>0)在直線x=
a2c
(a為長半軸,c為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),
OA
+
OB
a
=(3,-1)
共線,則該橢圓的離心率為( 。
A、
5
3
B、
3
2
C、
6
3
D、
2
2
3

查看答案和解析>>

同步練習(xí)冊答案