已知橢圓C:=1(a>b>0)的離心率e=,左、右焦點(diǎn)分別為F1、F2,點(diǎn)P(2,),點(diǎn)F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+m與橢圓C交于M、N兩點(diǎn),直線F2M與F2N的傾斜角分別為α,β,且α+β=π,試問(wèn)直線l是否過(guò)定點(diǎn)?若過(guò),求該定點(diǎn)的坐標(biāo).
(1)由橢圓C的離心率e=,得=,其中c=,
橢圓C的左、右焦點(diǎn)分別為F1(-c,0)、F2(c,0).
又點(diǎn)F2在線段PF1的中垂線上,
∴|F1F2|=|PF2|,∴(2c)2=()2+(2-c)2
解得c=1,∴a2=2,b2=1,∴橢圓的方程為+y2=1.
(2)由題意直線MN的方程為y=kx+m,
由消去y得(2k2+1)x2+4kmx+2m2-2=0.
設(shè)M(x1,y1),N(x2,y2),
則x1+x2=-,x1x2=,且kF2M=,kF2N=,
由已知α+β=π得
即+=0.
化簡(jiǎn),得2kx1x2+(m-k)(x1+x2)-2m=0,
∴2k·--2m=0,整理得m=-2k.
∴直線MN的方程為y=k(x-2),
因此直線MN過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(10分)如圖,要計(jì)算西湖岸邊兩景點(diǎn)的距離,由于地形的限制,需要在岸上選取兩點(diǎn),現(xiàn)測(cè)得,, ,,求兩景點(diǎn)的距離(精確到0.1km).參考數(shù)據(jù):  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知向量
a
,
b
是相互垂直的單位向量,且|
c
|=13,
c
a
=3
,
c
b
=4
,則對(duì)于任意的實(shí)數(shù)t1,t2,|
c
-t1
a
-t2
b
|的最小值為(  )
A.5B.7C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在同一直角坐標(biāo)系中,直線變成直線的伸縮變換是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)過(guò)點(diǎn)的直線與橢圓相交于AB兩個(gè)不同的點(diǎn),且.記O為坐標(biāo)原點(diǎn).求的面積取得最大值時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Δ是內(nèi)接于⊙O,,直線切⊙O于點(diǎn),弦,相交于點(diǎn)
(I) 求證:Δ≌Δ;
(Ⅱ)若,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(幾何證明選講選做題) 如圖4,是圓外一點(diǎn),直線與圓相交于、,是圓的切線,切點(diǎn)為、。若,則四邊形的面積      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,則的最大值為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)是雙曲線上一點(diǎn),、是它的左、右焦點(diǎn),若,則雙曲線的離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案