(12分)某種有獎銷售的飲料,瓶蓋內(nèi)印有“獎勵一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內(nèi)印有“獎勵一瓶”字樣即為中獎,中獎概率為。甲、乙、丙三位同學(xué)每人購買了一瓶該飲料。
(1)求甲中獎且乙、丙沒有中獎的概率;
(2)求中獎人數(shù)的分布列及數(shù)學(xué)期望E。

;(1)P= ;
(2)


0
1
2
3
P




 
 服從二項分布,E=3×= 。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成個等級,等級系數(shù)依次為,其中為標(biāo)準(zhǔn)為標(biāo)準(zhǔn),產(chǎn)品的等級系數(shù)越大表明產(chǎn)品的質(zhì)量越好,已知某廠執(zhí)行標(biāo)準(zhǔn)生產(chǎn)該產(chǎn)品,且該廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn).
(Ⅰ)從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
該行業(yè)規(guī)定產(chǎn)品的等級系數(shù)的為一等品,等級系數(shù)的為二等品,等級系數(shù)的為三等品,
(1)試分別估計該廠生產(chǎn)的產(chǎn)品的一等品率、二等品率和三等品率;
(2)已知該廠生產(chǎn)一件該產(chǎn)品的利潤y(單位:元)與產(chǎn)品的等級系數(shù)的關(guān)系式為:
,從該廠生產(chǎn)的產(chǎn)品中任取一件,其利潤記為,用這個樣本的頻率分布估計總體分布,將頻率視為概率,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)把一個正方體的表面涂上紅色,在它的長、寬、高上等距離地各切三刀,則大正方體被分割成64個大小相等的小正方體,將這些小正方體均勻地攪混在一起,如果從中任取1個,求下列事件的概率
(1)事件A=“這個小正方體各個面都沒有涂紅色”
(2)事件B=“這個小正方體只有1個面涂紅色”
(3)事件C=“這個小正方體至少2個面涂紅色”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在一次數(shù)學(xué)考試中,第21題和第22題為選做題. 規(guī)定每位考生必須且只須在其中選做一題. 設(shè)4名考生選做每一道題的概率均為.
(1)求其中甲、乙兩名學(xué)生選做同一道題的概率;
(2)設(shè)這4名考生中選做第22題的學(xué)生個數(shù)為,求的概率分布及數(shù)學(xué)期望. 的解析

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)為增強(qiáng)市民交通規(guī)范意識,我市面向全市征召勸導(dǎo)員志愿者,分布于各候車亭或十字路口處.現(xiàn)從符合條件的500名志愿者中隨機(jī)抽取100名志愿者,他們的年齡情況如下表所示.
(1)頻率分布表中的①、②位置應(yīng)填什么數(shù)據(jù)?并在答題卡中補(bǔ)全頻率分布直方圖(如圖),再根據(jù)頻率分布直方圖估計這500名志愿者中年齡在[30,35)歲的人數(shù);
(2)在抽出的100名志愿者中按年齡再采用分層抽樣法抽取20人參加“規(guī)范摩的司機(jī)的交通意識”培訓(xùn)活動,從這20人中選取2名志愿者擔(dān)任主要負(fù)責(zé)人,記這2名志愿者中“年齡低于30歲”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

分組(單位:歲)
 
頻數(shù)
 
頻率
 
[20,25)
 
5
 
0.05
 
[25,30)
 

 
0.20
 
[30,35)
 
35
 

 
[35,40)
 
30
 
0.30
 
[40,45]
 
10
 
0.10
 
合計
 
100
 
1.00
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題分12分)
從裝有2只紅球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次為紅球的概率;
(Ⅱ)若抽取后不放回,設(shè)抽完紅球所需的次數(shù)為,求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本大題9分)袋中有2個紅球,n個白球,各球除顏色外均相同.已知從袋中摸出2個球均為白球的概率為,(Ⅰ)求n;(Ⅱ)從袋中不放回的依次摸出三個球,記ξ為相鄰兩次摸出的球不同色的次數(shù)(例如:若取出的球依次為紅球、白球、白球,則ξ=1),求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)某高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座。(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時稱為滿座,否則稱為不滿座)統(tǒng)計數(shù)據(jù)表明,各學(xué)科講座各天的滿座的概率如下表:

根據(jù)上表:
(1)求數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座的概率;
(2)設(shè)周三各輔導(dǎo)講座滿座的科目數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)一個盒子中裝有5張卡片,每張卡片上寫有一個數(shù)字,數(shù)字分別是1、2、3、4、5,現(xiàn)從盒子中隨機(jī)抽取卡片。
(1)從盒中依次抽取兩次卡片,每次抽取一張,取出的卡片不放回,求兩次取到的卡片的數(shù)字既不全是奇數(shù),也不全是偶數(shù)的概率;
(2)若從盒子中有放回的抽取3次卡片,每次抽取一張,求恰有兩次取到卡片的數(shù)字為偶數(shù)的概率;
(3)從盒子中依次抽取卡片,每次抽取一張,取出的卡片不放回,當(dāng)放回記有奇數(shù)的卡片即停止抽取,否則繼續(xù)抽取卡片,求抽取次數(shù)X的分布列和期望。

查看答案和解析>>

同步練習(xí)冊答案