某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會(huì)的干部競(jìng)選.
(1)設(shè)所選3人中女生人數(shù)為,求的分布列及數(shù)學(xué)期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率.
(1)的分布列為

0
1
2




。
(2)

試題分析:解:(1)的所有可能取值為0,1,2.
依題意,得,  ,  
的分布列為

0
1
2




。                          7分
(2)設(shè)“男生甲被選中”為事件,“女生乙被選中”為事件,
, 

故在男生甲被選中的情況下,女生乙也被選中的概率為.     12分
點(diǎn)評(píng):主要是考查了隨機(jī)變量的分布列和期望值的運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

現(xiàn)有甲、乙兩個(gè)靶.某射手向甲靶射擊兩次,每次命中的概率為,每命中一次得1分,沒(méi)有命中得0分;向乙靶射擊一次,命中的概率為,命中得2分,沒(méi)有命中得0分.該射手每次射擊的結(jié)果相互獨(dú)立.假設(shè)該射手完成以上三次射擊.
(I)求該射手恰好命中兩次的概率;
(II)求該射手的總得分的分布列及數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為了解某校高三畢業(yè)班報(bào)考體育專業(yè)學(xué)生的體重(單位:千克)情況,將從該市某學(xué)校抽取的樣本數(shù)據(jù)整理后得到如下頻率分布直方圖.已知圖中從左至右前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.

(Ⅰ)求該校報(bào)考體育專業(yè)學(xué)生的總?cè)藬?shù)n;
(Ⅱ)若用這所學(xué)校的樣本數(shù)據(jù)來(lái)估計(jì)該市的總體情況,現(xiàn)從該市報(bào)考體育專業(yè)的學(xué)生中任選3人,設(shè)表示體重超過(guò)60千克的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

近幾年來(lái),我國(guó)許多地區(qū)經(jīng)常出現(xiàn)干旱現(xiàn)象,為抗旱經(jīng)常要進(jìn)行人工降雨,F(xiàn)由天氣預(yù)報(bào)得知,某地在未來(lái)3天的指定時(shí)間的降雨概率是:前2天均為50%,后1天為80%.3天內(nèi)任何一天的該指定時(shí)間沒(méi)有降雨,則在當(dāng)天實(shí)行人工降雨,否則,當(dāng)天不實(shí)施人工降雨.求不需要人工降雨的天數(shù)x的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是一個(gè)從的”闖關(guān)”游戲.

規(guī)則規(guī)定:每過(guò)一關(guān)前都要拋擲一個(gè)在各面上分別標(biāo)有1,2,3,4的均勻的正四面體.在過(guò)第n(n=1,2,3)關(guān)時(shí),需要拋擲n次正四面體,如果這n次面朝下的數(shù)字之和大于則闖關(guān)成功.
(1)求闖第一關(guān)成功的概率;
(2)記闖關(guān)成功的關(guān)數(shù)為隨機(jī)變量X,求X的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知甲箱中只放有x個(gè)紅球與y個(gè)白球,乙箱中只放有2個(gè)紅球、1個(gè)白球與1個(gè)黑球(球除顏色外,無(wú)其它區(qū)別). 若甲箱從中任取2個(gè)球, 從乙箱中任取1個(gè)球.
(Ⅰ)記取出的3個(gè)球的顏色全不相同的概率為P,求當(dāng)P取得最大值時(shí)的值;
(Ⅱ)當(dāng)時(shí),求取出的3個(gè)球中紅球個(gè)數(shù)的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)盒子里裝有6件包裝完全相同的產(chǎn)品,已知其中有2件次品,其余4件是合格品。為了找到2件次品,只好將盒子里的這些產(chǎn)品包裝隨機(jī)打開(kāi)檢查,直到兩件次品被全部檢查或推斷出來(lái)為止。記表示將兩件次品被全部檢查或推斷出來(lái)所需檢查次數(shù)。
(I)求兩件次品被全部檢查或推斷出來(lái)所需檢查次數(shù)恰為4次的概率;
(II)求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)字1,2,3,4,5任意排成一列,如果數(shù)字k 恰好在第k個(gè)位置上,則稱有一個(gè)巧合,則巧合數(shù) 的分布列為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某射手射擊所得環(huán)數(shù)X的分布列如下:
X
7
8
9
10
P
x
0.1
0.3
y
已知X的期望E(X)=8.9,則y的值為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案