已知A是三角形ABC的內(nèi)角,則“cosA=
1
2
”是“sinA=
3
2
”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)三角函數(shù)的公式,利用充分條件和必要條件的定義進行判斷.
解答: 解:∵A是三角形ABC的內(nèi)角,
∴若cosA=
1
2
,則A=
π
3
,此時sinA=
3
2
成立,即充分性成立.
若sinA=
3
2
,則A=
π
3
3
,當(dāng)A=
3
,cosA=-
1
2
,即必要性不成立,
故“cosA=
1
2
”是“sinA=
3
2
”充分不必要條件,
故選:A.
點評:本題主要考查充分條件和必要條件的應(yīng)用,根據(jù)三角函數(shù)的關(guān)系式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an=
2n-1,1≤n≤10
219-n,11≤n≤19
,則該數(shù)列從第5項到第15項的和為(  )
A、2016B、1528
C、1504D、992

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C1的中心在原點O,長軸左、右端點M,N在x軸上,橢圓C2的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點,與C2交于兩點,這四點按縱坐標(biāo)從大到小依次為A,B,C,D,且BO∥AN,則離心率e的范圍是( 。
A、
2
2
<e<1
B、0<e<
2
2
C、0<e<
1
2
D、
1
2
<e<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用min{a,b}表示a,b兩個數(shù)中的最小值.設(shè)f(x)=min{2x,6-x},則f(x)的最大值為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中值域是(0,+∞)的是( 。
A、y=
x2+3x+2
B、y=x2+x+
1
2
C、y=2x
D、y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的公比為q,其前n項積為Tn,且滿足a1>1,a99•a100-1>0,
a99-1
a100-1
<0.得出下列結(jié)論:(1)0<q<1;(2)a99•a100-1<0;(3)T100的值是Tn中最大的;(4)使Tn>1成立的最大自然數(shù)n等于198.其中正確的結(jié)論的個數(shù)為(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
1
1+i
(i為虛數(shù)單位),則z的共軛復(fù)數(shù)
.
z
是( 。
A、
1
2
-
1
2
i
B、
1
2
+
1
2
i
C、-
1
2
-
1
2
i
D、-
1
2
+
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=6,BC=3,AC=5,則
AB
BC
=( 。
A、10B、-12
C、-10D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(
10
2
,0)作傾斜角為α的直線l與曲線C:x2+2y2=1交于不同的兩點M,N,求|PM|•|PN|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案