【題目】某商場(chǎng)舉行的“三色球”購(gòu)物摸獎(jiǎng)活動(dòng)規(guī)定:在一次摸獎(jiǎng)中,摸獎(jiǎng)?wù)呦葟难b有3個(gè)紅球與4個(gè)白球的袋中任意摸出3個(gè)球,再?gòu)难b有1個(gè)藍(lán)球與2個(gè)白球的袋中任意摸出1個(gè)球,根據(jù)摸出4個(gè)球中紅球與藍(lán)球的個(gè)數(shù),設(shè)一、二、三等獎(jiǎng)如下:

獎(jiǎng)級(jí)

摸出紅、藍(lán)球個(gè)數(shù)

獲獎(jiǎng)金額

一等獎(jiǎng)

31藍(lán)

200

二等獎(jiǎng)

30藍(lán)

50

三等獎(jiǎng)

21藍(lán)

10

其余情況無(wú)獎(jiǎng)且每次摸獎(jiǎng)最多只能獲得一個(gè)獎(jiǎng)級(jí).

1)求摸獎(jiǎng)?wù)叩谝淮蚊驎r(shí)恰好摸到1個(gè)紅球的概率;

2)求摸獎(jiǎng)?wù)咴谝淮蚊?jiǎng)中獲獎(jiǎng)金額的分布列.

【答案】1;(2)詳見(jiàn)解析.

【解析】

1)從裝有3個(gè)紅球與4個(gè)白球的袋中任意摸出3個(gè)球,有種方法,恰好摸到1個(gè)紅球有種方法,然后可求概率;

2)求出的所有可能值,分別求解其對(duì)應(yīng)的概率,然后可得分布列.

設(shè)表示摸到個(gè)紅球,表示摸到個(gè)藍(lán)球,則獨(dú)立.

1)從裝有3個(gè)紅球與4個(gè)白球的袋中任意摸出3個(gè)球,有種方法,恰好摸到1個(gè)紅球有種方法,故所求概率為.

2的所有可能值為:0,10,50,200,且

,

,

,

.

綜上知的分布列為

0

10

50

200

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(Ⅰ)寫(xiě)出曲線C的直角坐標(biāo)方程;

(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長(zhǎng)度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,底面是邊長(zhǎng)為4的正三角形,,底面,點(diǎn)分別為,的中點(diǎn).

(1)求證:平面平面;

(2)在線段上是否存在點(diǎn),使得直線與平面所成的角的正弦值為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若方程fx)﹣m=0恰有兩個(gè)實(shí)根,則實(shí)數(shù)m的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個(gè)零點(diǎn),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐的底面是邊長(zhǎng)為的菱形,,點(diǎn)E是棱BC的中點(diǎn),,點(diǎn)P在平面ABCD的射影為O,F(xiàn)為棱PA上一點(diǎn).

1求證:平面平面BCF;

2平面PDE,,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某居民最近連續(xù)幾年的月用水量進(jìn)行統(tǒng)計(jì),得到該居民月用水量單位:噸的頻率分布直方圖,如圖一.

根據(jù)頻率分布直方圖估計(jì)該居民月平均用水量;

已知該居民月用水量T與月平均氣溫單位:的關(guān)系可用回歸直線模擬年當(dāng)?shù)卦缕骄鶜鉁?/span>t統(tǒng)計(jì)圖如圖二,把2017年該居民月用水量高于和低于的月份分為兩層,用分層抽樣的方法選取5個(gè)月,再?gòu)倪@5個(gè)月中隨機(jī)抽取2個(gè)月,這2個(gè)月中該居民有個(gè)月每月用水量超過(guò),視頻率為概率,求出

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)分別為軸,直線軸于點(diǎn),為橢圓上的動(dòng)點(diǎn),的面積的最大值為1.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作兩條直線與橢圓分別交于且使軸,如圖,問(wèn)四邊形的兩條對(duì)角線的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上是增函數(shù),求實(shí)數(shù)的取值范圍;

(2)若函數(shù)上的最小值為3,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案