【題目】已知F1、F2分別為雙曲線 (a>0,b>0)的左、右焦點(diǎn),若雙曲線左支上存在一點(diǎn)P使得 =8a,則雙曲線的離心率的取值范圍是 .
【答案】(1,3]
【解析】解:∵P為雙曲線左支上一點(diǎn), ∴|PF1|﹣|PF2|=﹣2a,
∴|PF2|=|PF1|+2a,①
又 =8a,②
∴由①②可得,|PF1|=2a,|PF2|=4a.
∴|PF1|+|PF2|≥|F1F2|,即2a+4a≥2c,
∴ ≤3,③
又|PF1|+|F1F2|>|PF2|,
∴2a+2c>4a,
∴ >1.④
由③④可得1< ≤3.
故答案為:(1,3].
依題意,雙曲線左支上存在一點(diǎn)P使得 =8a,|PF1|﹣|PF2|=﹣2a,可求得,|PF1|=2a,|PF2|=4a,再利用|PF1|、|F1F2|、|PF2|之間的關(guān)系即可求得雙曲線的離心率的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果把直角三角形的三邊都增加同樣的長度,則這個(gè)新的三角形的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.由增加的長度決定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)
如圖,在多面體中,四邊形是菱形,相交于點(diǎn),,,平面平面,,點(diǎn)為的中點(diǎn).
(1)求證:直線平面;
(2)求證:直線平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市政府為了實(shí)施政府績效管理、創(chuàng)新政府公共服務(wù)模式、提高公共服務(wù)效率.實(shí)施了“政府承諾,等你打分”民意調(diào)查活動(dòng),通過問卷調(diào)查了學(xué)生、在職人員、退休人員共250人,統(tǒng)計(jì)結(jié)果表不幸被污損,如表:
學(xué)生 | 在職人員 | 退休人員 | |
滿意 | 78 | ||
不滿意 | 5 | 12 |
若在所調(diào)查人員中隨機(jī)抽取1人,恰好抽到學(xué)生的概率為0.32.
(1)求滿意學(xué)生的人數(shù);
(2)現(xiàn)用分層抽樣的方法在所調(diào)查的人員中抽取25人,則在職人員應(yīng)抽取多少人?
(3)若滿意的在職人員為77,則從問卷調(diào)查中填寫不滿意的“學(xué)生和在職人員”中選出2人進(jìn)行訪談,求這2人中包含了兩類人員的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某商業(yè)中心O有通往正東方向和北偏東30方向的兩條街道,某公園P位于商業(yè)中心北偏東角(),且與商業(yè)中心O的距離為公里處,現(xiàn)要經(jīng)過公園P修一條直路分別與兩條街道交匯于A,B兩處。
(1)當(dāng)AB沿正北方向時(shí),試求商業(yè)中心到A,B兩處的距離和;
(2)若要使商業(yè)中心O到A,B兩處的距離和最短,請確定A,B的最佳位置。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(1)若f(x)的圖象與g(x)的圖象所在兩條曲線的一個(gè)公共點(diǎn)在y軸上,且在該點(diǎn)處兩條曲線的切線互相垂直,求b和c的值。
(2)若a=c=1,b=0,試比較f(x)與g(x)的大小,并說明理由;
(3)若b=c=0,證明:對任意給定的正數(shù)a,總存在正數(shù)m,使得當(dāng)x時(shí),
恒有f(x)>g(x)成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C對邊分別為a、b、c,sinA+sinB=2sinC,a=2b.
(1)證明:△ABC為鈍角三角形;
(2)若S△ABC= ,求c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的個(gè)數(shù)為( )
(1)
(2)已知向量 =(6,2)與 =(﹣3,k)的夾角是鈍角,則k的取值范圍是k<0
(3)若向量 能作為平面內(nèi)所有向量的一組基底
(4)若 ,則 在 上的投影為 .
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知tanA,tanB是關(guān)于x的方程x2+(x+1)p+1=0的兩個(gè)實(shí)根.
(1)求角C;
(2)求實(shí)數(shù)p的取值集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com