如圖,B為△ACD所在平面外一點(diǎn),M、N、G分別為△ABC、△ABD、△BCD的重心,
(1)求證:平面MNG∥平面ACD;
(2)求.
(1)證明:連結(jié) BM、BN、BG并延長(zhǎng)交AC、AD、CD分別于P、F、H.∵M、N、G分別為△ABC、△ABD、△BCD的重心, 則有. 連結(jié)PF、FH、PH,有MN∥PF. 又平面ACD,平面ACD, ∴MN∥平面ACD. 同理MG∥平面ACD,MG∩MN=M, ∴平面MNG∥平面ACD. (2)解:由(1)可知:,∴. 又, ∴. 同理, ∴△MNG∽△ACD,其相似比為1∶3. ∴. |
(1)要證明平面 MNG∥平面ACD,由于M、N、G分別為△ABC、△ABD、△BCD的重心,因此可想到利用重心的性質(zhì)找出與平面平行的直線.(2)因?yàn)椤?/FONT>MNG所在的平面與△ACD所在的平面相互平行,因此,求兩三角形的面積之比,實(shí)則求這兩個(gè)三角形的對(duì)應(yīng)邊之比. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044
如圖所示,B為△ACD所在平面處一點(diǎn),M、N、G分別為△ABC、△ABD、△BCD的重心,(1)求證:平面MNG∥∶平面ACD;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年陜西省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年陜西省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com