【題目】雙曲線:的左右頂點(diǎn)分別為,,動直線垂直的實(shí)軸,且交于不同的兩點(diǎn),直線與直線的交點(diǎn)為.
(1)求點(diǎn)的軌跡的方程;
(2)過點(diǎn)作的兩條互相垂直的弦,,證明:過兩弦,中點(diǎn)的直線恒過定點(diǎn).
【答案】(1);(2)證明見解析.
【解析】
(1) 設(shè) 則且,再求出直線的方程為,直線的方程為, 再消去即得點(diǎn)的軌跡的方程;
(2)先求出D的中點(diǎn),的中點(diǎn), 再證明過兩弦,中點(diǎn)的直線恒過定點(diǎn).
(1)因?yàn)?/span>,
設(shè) 則且①,
因?yàn)閯又本交雙曲線于不同的兩點(diǎn),所以且,
因?yàn)橹本的方程為②,
直線的方程為③,
②③得,
把①代入上式得,化簡得,
所以點(diǎn)的軌跡的方程為.
(2)依題意得直線與直線斜率均存在且不為0,
設(shè)直線的方程為,則直線的方程為,
聯(lián)立得,
則,設(shè),
,,
所以的中點(diǎn),
同理的中點(diǎn),
所以直線的斜率為,
所以直線的方程為,
整理得,
所以直線恒過定點(diǎn),即過兩弦中點(diǎn)的直線恒過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求證:若,則;
(2)當(dāng)時,試討論函數(shù)的零點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動.
(Ⅰ)求證:D1E⊥A1D;
(Ⅱ)在棱AB上是否存在點(diǎn)E使得AD1與平面D1EC成的角為?若存在,求出AE的長,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于無窮數(shù)列,若正整數(shù),使得當(dāng)時,有,則稱為“不減數(shù)列”.
(1)設(shè),均為正整數(shù),且,甲:為“不減數(shù)列”,乙:為“不減數(shù)列”.試判斷命題:“甲是乙的充分條件”的真假,并說明理由;
(2)已知函數(shù)與函數(shù)的圖象關(guān)于直線對稱,數(shù)列滿足,,如果為“不減數(shù)列”,試求的最小值;
(3)對于(2)中的,設(shè),且.是否存在實(shí)數(shù)使得為“不減數(shù)列”?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是古希臘數(shù)學(xué)家阿基米德用平衡法求球的體積所用的圖形.此圖由正方形、半徑為的圓及等腰直角三角形構(gòu)成,其中圓內(nèi)切于正方形,等腰三角形的直角頂點(diǎn)與的中點(diǎn)重合,斜邊在直線上.已知為的中點(diǎn),現(xiàn)將該圖形繞直線旋轉(zhuǎn)一周,則陰影部分旋轉(zhuǎn)后形成的幾何體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,分別為,和的中點(diǎn),則下列關(guān)系:
①;
②平面;
③;
④平面,
正確的編號為___________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】血藥濃度(Serum Drug Concentration)是指藥物吸收后在血漿內(nèi)的總濃度(單位:mg/ml),通常用血藥濃度來研究藥物的作用強(qiáng)度.下圖為服用同等劑量的三種新藥后血藥濃度的變化情況,其中點(diǎn)的橫坐標(biāo)表示服用第種藥后血藥濃度達(dá)到峰值時所用的時間,其它點(diǎn)的橫坐標(biāo)分別表示服用三種新藥后血藥濃度第二次達(dá)到峰值一半時所用的時間(單位:h),點(diǎn)的縱坐標(biāo)表示第種藥的血藥濃度的峰值.()
①記為服用第種藥后達(dá)到血藥濃度峰值時,血藥濃度提高的平均速度,則中最大的是_______;
②記為服用第種藥后血藥濃度從峰值降到峰值的一半所用的時間,則中最大的是_______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( ).
A.“,互為共軛復(fù)數(shù)”是“”的充分不必要條件
B.如圖,在復(fù)平面內(nèi),若復(fù)數(shù),對應(yīng)的向量分別是,,則復(fù)數(shù)對應(yīng)的點(diǎn)的坐標(biāo)為
C.若函數(shù)恰在上單調(diào)遞減,則實(shí)數(shù)的值為4
D.函數(shù)在點(diǎn)處的切線方程為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com