【題目】雙曲線的左右頂點(diǎn)分別為,動直線垂直的實(shí)軸,且交于不同的兩點(diǎn),直線與直線的交點(diǎn)為.

(1)求點(diǎn)的軌跡的方程;

(2)過點(diǎn)的兩條互相垂直的弦,證明:過兩弦,中點(diǎn)的直線恒過定點(diǎn).

【答案】(1);(2)證明見解析.

【解析】

(1) 設(shè) ,再求出直線的方程為,直線的方程為, 再消去即得點(diǎn)的軌跡的方程;

(2)先求出D的中點(diǎn),的中點(diǎn), 再證明過兩弦中點(diǎn)的直線恒過定點(diǎn).

(1)因?yàn)?/span>,

設(shè) ①,

因?yàn)閯又本交雙曲線于不同的兩點(diǎn),所以,

因?yàn)橹本的方程為②,

直線的方程為③,

③得

把①代入上式得,化簡得

所以點(diǎn)的軌跡的方程為.

(2)依題意得直線與直線斜率均存在且不為0,

設(shè)直線的方程為,則直線的方程為,

聯(lián)立,

,設(shè),

,

所以的中點(diǎn)

同理的中點(diǎn),

所以直線的斜率為,

所以直線的方程為,

整理得,

所以直線恒過定點(diǎn),即過兩弦中點(diǎn)的直線恒過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求證:若,則;

(2)當(dāng)時,試討論函數(shù)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動.

(Ⅰ)求證:D1EA1D;

)在棱AB上是否存在點(diǎn)E使得AD1與平面D1EC成的角為?若存在,求出AE的長,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于無窮數(shù)列,若正整數(shù),使得當(dāng)時,有,則稱不減數(shù)列”.

(1)設(shè)均為正整數(shù),且,甲:不減數(shù)列,乙:不減數(shù)列”.試判斷命題:“甲是乙的充分條件的真假,并說明理由;

(2)已知函數(shù)與函數(shù)的圖象關(guān)于直線對稱,數(shù)列滿足,,如果不減數(shù)列,試求的最小值;

(3)對于(2)中的,設(shè),且.是否存在實(shí)數(shù)使得不減數(shù)列”?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是古希臘數(shù)學(xué)家阿基米德用平衡法求球的體積所用的圖形.此圖由正方形、半徑為的圓及等腰直角三角形構(gòu)成,其中圓內(nèi)切于正方形,等腰三角形的直角頂點(diǎn)與的中點(diǎn)重合,斜邊在直線上.已知的中點(diǎn),現(xiàn)將該圖形繞直線旋轉(zhuǎn)一周,則陰影部分旋轉(zhuǎn)后形成的幾何體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,分別為,的中點(diǎn),則下列關(guān)系:

;

平面

;

平面,

正確的編號為___________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】血藥濃度(Serum Drug Concentration)是指藥物吸收后在血漿內(nèi)的總濃度(單位:mg/ml),通常用血藥濃度來研究藥物的作用強(qiáng)度.下圖為服用同等劑量的三種新藥后血藥濃度的變化情況,其中點(diǎn)的橫坐標(biāo)表示服用第種藥后血藥濃度達(dá)到峰值時所用的時間,其它點(diǎn)的橫坐標(biāo)分別表示服用三種新藥后血藥濃度第二次達(dá)到峰值一半時所用的時間(單位:h),點(diǎn)的縱坐標(biāo)表示第種藥的血藥濃度的峰值.(

①記為服用第種藥后達(dá)到血藥濃度峰值時,血藥濃度提高的平均速度,則中最大的是_______;

②記為服用第種藥后血藥濃度從峰值降到峰值的一半所用的時間,則中最大的是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.

(1)求該拋物線的方程;

(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是( ).

A.,互為共軛復(fù)數(shù)的充分不必要條件

B.如圖,在復(fù)平面內(nèi),若復(fù)數(shù),對應(yīng)的向量分別是,,則復(fù)數(shù)對應(yīng)的點(diǎn)的坐標(biāo)為

C.若函數(shù)恰在上單調(diào)遞減,則實(shí)數(shù)的值為4

D.函數(shù)在點(diǎn)處的切線方程為

查看答案和解析>>

同步練習(xí)冊答案