已知冪函數(shù)y=xn(n∈Z),在x>0時函數(shù)為增函數(shù),在x<0時函數(shù)為減函數(shù),則n的值是
 
考點:冪函數(shù)圖象及其與指數(shù)的關系
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)冪函數(shù)在(0,+∞)在指數(shù)a>0為增函數(shù),可得n為正整數(shù),再由在x<0時函數(shù)為減函數(shù),可得函數(shù)為偶函數(shù),n為正偶數(shù),進而得到答案.
解答: 解:∵冪函數(shù)y=xn(n∈Z),在x>0時函數(shù)為增函數(shù),
∴n>0,
又由在x<0時函數(shù)為減函數(shù),
故n為正偶數(shù),
故n=2k,k∈N*,
故答案為:n=2k,k∈N*
點評:本題考查的知識點是冪函數(shù)的圖象及其與指數(shù)的關系,熟練掌握冪函數(shù)的圖象和性質(zhì)是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正四棱錐P-ABCD的底面為邊長為
2
的正方形,高為1.則此四棱錐的兩個相鄰側(cè)面所成的二面角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:△ABC中,
sinA
sinC
=
sin(A-B)
sin(B-C)
,求證:2b2=a2+c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:1+cos2θ+2sin2θ=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學校舉行聯(lián)歡會,所有參演的節(jié)目都由甲、乙、丙三名專業(yè)老師投票決定是否獲獎,甲、乙、丙三名老師都有“獲獎”“待定”“淘汰”三類票各一張,每個節(jié)目投票時,甲、乙、丙三名老師必須且只能投一張票,每人投三類票中的任意一類票的概率為
1
3
,且三人投票相互沒有影響,若投票結(jié)果中至少有兩張“獲獎”票,則決定該節(jié)目最終獲一等獎;否則,該節(jié)目不能獲一等獎.
(1)求某節(jié)目的投票結(jié)果是最終獲一等獎的概率;
(2)求該節(jié)目投票結(jié)果中所含“獲獎”和“待定”票票數(shù)之和X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:mx-y=0,l2:x+my-m-2=0,m∈R.
(1)求證:對m的任意實數(shù)值,l1和l2的交點M總在一個定圓上;
(2)若l1與(1)中的定圓的另一個交點為P1,l2與(1)中的定圓的另一個交點為P2,求△PP1P2面積取得最大值,并求出此時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

長為6的線段AB兩端點在拋物線x2=4y上移動,在線段AB中點縱坐標的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記數(shù)列{an}的前n項和為Sn(n∈N*),若存在實常數(shù)A,B,C,對于任意正整數(shù)n,都有an+Sn=An2+Bn+C成立.
(1)已知A=B=0,a1≠0,求證:數(shù)列{an}(n∈N*)是等比數(shù)列;
(2)已知數(shù)列{an}(n∈N*)是等差數(shù)列,求證:3A+C=B;
(3)已知a1=1,B>0且B≠1,B+C=2.設λ為實數(shù),若?n∈N*,
an
an+1
<λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0)的準線與直線x+y-3=0以及x軸圍成三角形面積為8,則p=
 

查看答案和解析>>

同步練習冊答案