【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知4sin2 .
(1)求角C的大;
(2)若c= ,求a﹣b的取值范圍.
【答案】
(1)解:在△ABC中,A+B+C=π,
∴sin2 = = .
∵4sin2 ,
∴2(1+cosC)﹣(2cos2C﹣1)= ,即4cos2C﹣4cosC+1=0,
解得cosC= .
∵C∈(0,π),∴C= .
(2)解:由正弦定理: ,
∵a﹣b=sinA﹣sinB=sinA﹣sin( )= sinA﹣ cosA=sin(A﹣ ).
∵A∈(0, ),∴A﹣ ∈(﹣ , ).
∴sin(A﹣ )<sin = ,
sin(A﹣ )>sin(﹣ )=﹣ .
∴a﹣b的取值范圍是(﹣ , )
【解析】(1)使用三角形的內(nèi)角和公式和二倍角公式化簡(jiǎn)式子,得出關(guān)于cosC的方程;(2)根據(jù)正弦定理得出a﹣b=sinA﹣sinB,消去B,得到關(guān)于A的三角函數(shù),利用正弦函數(shù)的性質(zhì)和A的范圍求出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,底面為梯形,,,且.
(Ⅰ)若點(diǎn)為上一點(diǎn)且,證明:平面;
(Ⅱ)求二面角的大。
(Ⅲ)在線(xiàn)段上是否存在一點(diǎn),使得?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(1+x).
(1)若曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程為y=g(x),當(dāng)x≥0時(shí),f(x)≤ ,求t的最小值;
(2)當(dāng)n∈N*時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)若,求函數(shù)的極值;
(2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(3)若對(duì)內(nèi)任意一個(gè),都有 成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求曲線(xiàn)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)求經(jīng)過(guò)點(diǎn)A(1,3)的曲線(xiàn)的切線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù),.
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= ,若函數(shù)y=f(x)﹣kx恒有一個(gè)零點(diǎn),則k的取值范圍為( )
A.k≤0
B.k≤0或k≥1
C.k≤0或k≥e
D.k≤0或k≥
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與函數(shù)的圖象在點(diǎn)(0,0)處有相同的切線(xiàn).
(Ⅰ)求a的值;
(Ⅱ)設(shè),求函數(shù)在上的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com