如圖,為△外接圓的切線,的延長線交直線于點,分別為弦與弦上的點,且,四點共圓.

(Ⅰ)證明:是△外接圓的直徑;
(Ⅱ)若,求過四點的圓的面積與△外接圓面積的比值.

(I)見解析;(II).

解析試題分析:(I)證明是△外接圓的直徑,關鍵是證明,利用已知條件易于得到;在利用四點共圓,其對角互補即得證.
(II)通過連接明確四點的圓的直徑為,得到;根據(jù),得,從而將圓面積之比,轉化成.
試題解析:(I)證明:∵為△外接圓的切線,∴
,∴

四點共圓,
是△外接圓的直徑;
(II)連接,
∴過四點的圓的直徑為,由,得,


故過四點的圓的面積與△外接圓面積的比值為,
.
考點:與圓相關的比例線段

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,△ABC內接于⊙O,點D在OC的延長線上,sinB=,∠D=30°.

(1)求證:AD是⊙O的切線.
(2)若AC=6,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為半圓的直徑,,為半圓上一點,過點作半圓的切線,過點,交圓于點,

(Ⅰ)求證:平分;
(Ⅱ)求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,、是圓的半徑,且是半徑上一點:延長交圓于點,過作圓的切線交的延長線于點.求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB是圓O的直徑,C,D是圓O上兩點,AC與BD相交于點E,GC,GD是圓O的切線,點F在DG的延長線上,且.求證:(1)D、E、C、F四點共圓;(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,己知邊上一點,經(jīng)過點,交于另一點,經(jīng)過點,,交于另一點,的另一交點為.

(I)求證:四點共圓;
(II)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交于BC于點E,AB=2AC.

(Ⅰ)求證:BE=2AD;
(Ⅱ)當AC=1,EC=2時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,的直徑,弦垂直,并與相交于點,點為弦上異于點的任意一點,連結、并延長交于點、.
⑴ 求證:、四點共圓;
⑵ 求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,AB=AC,過點A的直線與其外接圓交于點P,交BC延長線于點D。

(1)求證: ;
(2)若AC=3,求的值。

查看答案和解析>>

同步練習冊答案