為了解某班學生喜歡打籃球是否與性別有關,對本班50人進行了問卷調查得到了下表:

 

喜愛打籃球

不喜愛打籃球

合計

男生

20

5

25

女生

10

15[

25

合計

30

20

50

下面的臨界值表供參考:

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

則根據(jù)以下參考公式可得隨機變量K2的值為          (保留三位小數(shù)),有       %的把握認為喜愛打籃球與性別有關.(參考公式:K2,其中n=a+b+c+d)

 

【答案】

8.333  99.5%.

【解析】根據(jù)公式,所以有99.5%的把握認為喜愛打藍球與性別有關.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

為了解某班學生喜愛打籃球是否與性別有關,對此班50人進行了問卷調查得到了如下的列聯(lián)表:
喜愛打籃球 不喜愛打籃球 合計
男生 5
女生 10
合計 50
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為
3
5

(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為喜愛打籃球與性別有關?說明你的理由;
(3)已知喜愛打籃球的10位女生中,A1,A2,A3,A4,A5還喜歡打羽毛球,B1,B2,B3還喜歡打乒乓球,C1,C2還喜歡踢足球,現(xiàn)再從喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進行其他方面的調查,求B1和C1不全被選中的概率.
下面的臨界值表供參考:
p(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•韶關一模)為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯(lián)表:
喜愛打籃球 不喜愛打籃球 合計
男生 20 5 25
女生 10 15 25
合計 30 20 50
(1)用分層抽樣的方法在喜歡打藍球的學生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.
(3)為了研究喜歡打藍球是否與性別有關,計算出K2≈8.333,你有多大的把握認為是否喜歡打藍球與性別有關?下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

為了解某班學生喜歡打籃球是否與性別有關,對該班50人進行了問卷調查得到了如下的列聯(lián)表:

 

喜歡打籃球

不喜歡打籃球

合 計

男 生

 

5

 

女 生

10

 

 

合 計

 

 

50

已知在全部50人中隨機抽取1人抽到喜歡打籃球的學生的概率為0.6。

(Ⅰ)請將上面的列聯(lián)表補充完整;

(Ⅱ)是否有99%的把握認為喜歡打籃球與性別有關?說明你的理由;

(Ⅲ)已知不喜歡打籃球的5位男生中,喜歡踢足球,喜歡打羽毛球,喜歡打乒乓球,現(xiàn)在從這5位男生中選取3位進行其他方面的調查,求不全被選中的概率。

附:1.

2.在統(tǒng)計中,用以下結果對變量的獨立性進行判斷:

(1)當時,沒有充分的證據(jù)判定變量有關聯(lián),可以認為變量是沒有關聯(lián)的;

(2)當時,有90%的把握判定變量有關聯(lián);

(3)當時,有95%的把握判定變量有關聯(lián);

(4)當時,有99%的把握判定變量有關聯(lián)。

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

為了解某班學生喜歡打籃球是否與性別有關,對該班50人進行了問卷調查得到了如下的列聯(lián)表:

 

喜歡打籃球

不喜歡打籃球

合 計

男 生

 

5

 

女 生

10

 

 

合 計

 

 

50

已知在全部50人中隨機抽取1人抽到喜歡打籃球的學生的概率為0.6。

(Ⅰ)請將上面的列聯(lián)表補充完整;

(Ⅱ)是否有99%的把握認為喜歡打籃球與性別有關?說明你的理由;

(Ⅲ)已知不喜歡打籃球的5位男生中,喜歡踢足球,喜歡打羽毛球,喜歡打乒乓球,現(xiàn)在從這5位男生中選取3位進行其他方面的調查,求不全被選中的概率。

附:1.

2.在統(tǒng)計中,用以下結果對變量的獨立性進行判斷:

(1)當時,沒有充分的證據(jù)判定變量有關聯(lián),可以認為變量是沒有關聯(lián)的;

(2)當時,有90%的把握判定變量有關聯(lián);

(3)當時,有95%的把握判定變量有關聯(lián);

(4)當時,有99%的把握判定變量有關聯(lián)。

 

 

 

 

 

查看答案和解析>>

同步練習冊答案