【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn= + .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=an+2﹣an+ ,且數(shù)列{bn}的前n項(xiàng)和為Tn , 求證:Tn<2n+ .
【答案】
(1)解:當(dāng)n≥2時(shí),
an=Sn﹣Sn﹣1
= + ﹣ ﹣
=n+1,
又n=1時(shí),
a1=S1=2適合an=n+1,
∴an=n+1
(2)證明:由(1)知:
bn=n+3﹣(n+1)+
=2+ ×( ﹣ ),
∴Tn=b1+b2+b3+…+bn
=2n+ ×( ﹣ + ﹣ +…+ ﹣ )
=2n+ ×( + ﹣ ﹣ )
<2n+ :
【解析】(1)根據(jù)數(shù)列的通項(xiàng)an和Sn的關(guān)系,即可求解數(shù)列{an}的通項(xiàng)公式;(2)由bn=2+ ( ﹣ ),即可利用裂項(xiàng)相消求解數(shù)列的和,得以證明.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系),還要掌握數(shù)列的通項(xiàng)公式(如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足an+1+an=4n﹣3,n∈N*
(1)若數(shù)列{an}是等差數(shù)列,求a1的值;
(2)當(dāng)a1=﹣3時(shí),求數(shù)列{an}的前n項(xiàng)和Sn;
(3)若對(duì)任意的n∈N* , 都有 ≥5成立,求a1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線C的極坐標(biāo)方程為ρ=2(cosθ+sinθ).
(1)求C的直角坐標(biāo)方程;
(2)直線l: 為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于E,求|EA|+|EB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017重慶二診】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)已知某人一天的走路步數(shù)超過(guò)8000步被系統(tǒng)評(píng)定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來(lái)估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過(guò)5000步的有人,超過(guò)10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|,a∈R,g(x)=x2﹣1.
(1)當(dāng)a=1時(shí),解不等式f(x)≥g(x);
(2)記函數(shù)f(x)在區(qū)間[0,2]上的最大值為F(a),求F(a)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線 =1(a>0,b>0)的左右焦點(diǎn)分別為F1 , F2漸近線分別為l1 , l2 , 位于第一象限的點(diǎn)P在l1上,若l2⊥PF1 , l2∥PF2 , 則雙曲線的離心率是( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形中, ,矩形所在的平面與平面垂直,且.
(Ⅰ)求證:平面平面;
(Ⅱ)若為線段上一點(diǎn),平面與平面所成的銳二面角為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論中正確的個(gè)數(shù)有( )
(1)數(shù)列{an},{bn}都是等差數(shù)列,則數(shù)列{an+bn}也一定是等差數(shù)列;
(2)數(shù)列{an},{bn}都是等比數(shù)列,則數(shù)列{an+bn}也一定是等比數(shù)列;
(3)等差數(shù)列{an}的首項(xiàng)為a1 , 公差為d,取出數(shù)列中的所有奇數(shù)項(xiàng),組成一個(gè)新的數(shù)列,一定還是等差數(shù)列;
(4) G為a,b的等比中項(xiàng)G2=ab.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分為14分)已知定義域?yàn)镽的函數(shù)是奇函數(shù).
(1)求a,b的值;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com