某校高三4班有50名學(xué)生進行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別對全班的學(xué)生進行編號(1~50號),并以不同的方法進行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.此次投籃考試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀.以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):
甲抽取的樣本數(shù)據(jù)
編號性別投籃成績
290
760
1275
1780
2283
2785
3275
3780
270
760
乙抽取的樣本數(shù)據(jù)
編號性別投籃成績
195
885
1085
2070
2370
2880
3360
3565
370
860
(1)觀察乙抽取的樣本數(shù)據(jù),若從男同學(xué)中抽取兩名,求兩名男同學(xué)中恰有一名不優(yōu)秀的概率;
(2)請你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認為投籃成績和性別有關(guān)?
優(yōu)秀非優(yōu)秀合計
合計10
考點:獨立性檢驗
專題:應(yīng)用題,概率與統(tǒng)計
分析:(1)利用列舉法求出基本事件,根據(jù)古典概型概率公式,即可求兩名男同學(xué)中恰有一名不優(yōu)秀的概率.
(2)寫出2×2列聯(lián)表,求出K2,與臨界值比較,即可得出結(jié)論.
解答: 解:(1)記“兩名同學(xué)中恰有一名不優(yōu)秀”為事件A,乙抽取的樣本數(shù)據(jù)中,男同學(xué)有4名優(yōu)秀,記為a,b,c,d,2名不優(yōu)秀,記為e,f.
乙抽取的樣本數(shù)據(jù),若從男同學(xué)中抽取兩名,則總的基本事件有15個,
事件A包含的基本事件有{a,e},{b,e},{c,e},{d,e},{a,f},{b,f},{c,f},{d,f},共8個基本事件,
所以P(A)=
8
15

(2)設(shè)投籃成績與性別無關(guān),由乙抽取的樣本數(shù)據(jù),得2×2列聯(lián)表如下:
優(yōu)秀非優(yōu)秀合計
426
044
合計4610
K2=
10×(4×4-0×2)2
4×6×6×4
≈4.444>3.841,
所以有95%以上的把握認為投籃成績與性別有關(guān).
點評:本題主要考查概率與獨立性檢驗相交匯等基礎(chǔ)知識,考查數(shù)形結(jié)合能力、運算求解能力以及應(yīng)用用意識,考查必然與或然思想等,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知g(x)=lnx,其導(dǎo)函數(shù)為g'(x),反函數(shù)為g-1(x)
(1)求證:y=x+1的函數(shù)圖象恒不在y=g-1(x)的函數(shù)圖象的上方.
(2)設(shè)函數(shù)f(x)=eg(x)-g'(x)-a•g(x)(a∈R).若f(x)有兩個極值點x1,x2;記過點A(x1,f(x1))B(x2,f(x2))的直線斜率為k.問:是否存在a,使得k=2-a?若存在,求出a的值;若不存在,請說明理由.
(3)求證:
n
k=1
(
k
n
)n
e
e-1
.(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2+a
bx+c
是奇函數(shù),其中b為正整數(shù),f(1)=2,且f(2)>2.
(1)求函數(shù)f(x)的解析式及定義域;
(2)證明函數(shù)f(x)在[
1
2
,1]上的單調(diào)性,并求出f(x)在該區(qū)f(x)在該區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一組數(shù)x1,x2,…,xn的方差是4,則2x1-1,2x2-1,…,2xn-1的標準差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的圖象為過A(0,-2)的直線,y=g(x)的圖象為過點B(0,0)的直線,若f[g(x)]=g[f(x)]=3x-2,則y=f(x)與y=g(x)交點坐標為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項和,若a3=4,S9-S6=27,則該數(shù)列的公差d等于( 。
A、-
6
5
B、-1
C、
6
5
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2+2x,g(x)=lnx.
(Ⅰ)如果函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)函數(shù),求a的取值范圍;
(Ⅱ)是否存在正實數(shù)a,使得函數(shù)T(x)=
g(x)
x
-f′(x)+(2a+1)在區(qū)間(
1
e
,e)內(nèi)有兩個不同的零點(e=2.71828…是自然對數(shù)的底數(shù))?若存在,請求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(-2)=0,當(dāng)x>0時,有
xf′(x)-f(x)
x2
>0恒成立,則不等式xf(x)>0的解集是(  )
A、(-2,0)∪(2,+∞)
B、(-2,0)∪(0,2)
C、(-∞,-2)∪(0,2)
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-4|(x∈R),若存在正實數(shù)k,使得方程f(x)=k有兩個根a、b,其中2<a<b,則ab-2(a+b)的取值范圍是( 。
A、(2,2+2
2
B、(-4,0)
C、(-2,2)
D、(-4,2)

查看答案和解析>>

同步練習(xí)冊答案