在區(qū)間[0,π]內(nèi)隨機(jī)取兩個數(shù)分別記為a、b,則使得函數(shù)f(x)=x2+2ax-b2+π有零點(diǎn)的概率為( 。
A、
7
8
B、
3
4
C、
1
2
D、
1
4
考點(diǎn):幾何概型
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:先判斷概率的類型,由題意知本題是一個幾何概型,由a,b使得函數(shù)f(x)=x2+2ax-b2+π有零點(diǎn),得到關(guān)于a、b的關(guān)系式,寫出試驗(yàn)發(fā)生時包含的所有事件和滿足條件的事件,做出對應(yīng)的面積,求比值得到結(jié)果.
解答: 解:由題意知本題是一個幾何概型,
∵a,b使得函數(shù)f(x)=x2+2ax-b2+π有零點(diǎn),
∴△≥0
∴a2+b2≥π
試驗(yàn)發(fā)生時包含的所有事件是Ω={(a,b)|0≤a≤π,0≤b≤π}
∴S=π2
而滿足條件的事件是{(a,b)|a2+b2≥π},
∴s=π2-
1
4
π2=
3
4
π2,
由幾何概型公式得到P=
3
4

故選:B.
點(diǎn)評:幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)的圖象關(guān)于直線x=
3
對稱,它的周期為π,則( 。
A、f(x)的圖象過(0,
1
2
B、f(x)在[
π
12
3
]上是減函數(shù)
C、f(x)的一個對稱中心是(
12
,0)
D、將f(x)的圖象向右平移|φ|個單位得到函數(shù)y=2sinωx的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線a,b和平面α,其中a?α,b?α,則“a∥b”是“a∥α”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=9,S5=30,則a7+a8+a9=( 。
A、27B、36C、42D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+mx+n(m,n∈R)的值域?yàn)閇0,+∞),若關(guān)于x的不等式f(x)<a-1的解集為(m-3,m+2),則實(shí)數(shù)a的值是( 。
A、
21
4
B、
25
4
C、6
D、
29
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動點(diǎn)A(x,y)在單位圓x2+y2=1上繞圓心順時針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知t=0時點(diǎn)A(
1
2
,
3
2
),則當(dāng)0≤t≤12時,動點(diǎn)A的縱坐標(biāo)y關(guān)于t的函數(shù)y=f(t)的單調(diào)增區(qū)間是( 。
A、[0,5]
B、[5,11]
C、[11,12]
D、[0,5]和[11,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大;
(Ⅱ)若a=6,求△ABC的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

敘述橢圓的定義,并推導(dǎo)橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)(
2
,
2
2
)且離心率為
3
2

(1)求橢圓C的方程;
(2)已知A、B是橢圓C的左、右頂點(diǎn),動點(diǎn)M滿足MB⊥AB,連接AM交橢圓于點(diǎn)P,在x軸上是否存在異于點(diǎn)A、B的定點(diǎn)Q,使得以MP為直徑的圓經(jīng)過直線BP和直線MQ的交點(diǎn),若存在,求出Q點(diǎn),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案