【題目】如圖,在三棱錐中,底面,且,,,、分別是、的中點.
(1)求證:平面平面;
(2)求二面角的平面角的大小.
【答案】(Ⅰ)證明過程詳見解析;(Ⅱ).
【解析】
(Ⅰ)已知SB、AB、BC兩兩互相垂直,故可建立空間直角坐標(biāo)系如下圖.根據(jù)線段長度可求出相應(yīng)點的坐標(biāo),從而可推出,則,所以平面平面BCD.
(Ⅱ)求出兩個平面的法向量,利用法向量夾角與二面角平面角的關(guān)系求出平面角的大小.
(Ⅰ).
又因,所以建立如上圖所示的坐標(biāo)系.
所以A(2,0,0),,,
D(1,0,1),,S(0,0,2)
易得,,,
又,
又
又因,
所以平面平面BCD.
(Ⅱ)又
設(shè)平面BDE的法向量為,
則,即
所以
又因平面SBD的法向量為
所以
由圖可得二面角為銳角,所以二面角的平面角的大小為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,直線不過原點且不平行于坐標(biāo)軸,與有兩個交點,,線段的中點為.證明:
()直線的斜率與的斜率的乘積為定值.
()若過點,延長線段與交于點,當(dāng)四邊形為平行四邊形時,則直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水,天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸,若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸)( )
A.2寸B.3寸C.4寸D.5寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,,,,點是棱上不同于的動點.
(1)證明:;
(2)若平面將棱柱分成體積相等的兩部分,求此時二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求與橢圓有共同焦點且過點的雙曲線的標(biāo)準(zhǔn)方程;
(2)已知拋物線的焦點在軸上,拋物線上的點到焦點的距離等于5,求拋物線的標(biāo)準(zhǔn)方程和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】問:是否存在這樣的正整數(shù)數(shù)列,滿足,且對每個,均有或;而其各項的值恰構(gòu)成的一個排列?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)為了解本校某年級女生的身高情況,從本校該年級的女學(xué)生中隨機選出100名并統(tǒng)計她們的身高(單位:cm),得到的頻數(shù)分布表如下:
分組 | ||||
頻數(shù) | 20 | 20 | 50 | 10 |
(1)用分層抽樣的方法從身高在和的女生中共抽取6人,則身高在內(nèi)的女生應(yīng)抽取幾人?
(2)在(1)中抽取的6人中,再隨機抽取2人,求這2人身高都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為正方形,平面平面ABCD,,,E,F分別為AD,PB的中點.
(1)求證:平面ABCD;
(2)求證:平面PCD;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F為CE上的點,且BF⊥平面ACE.
(1)求證:AE⊥平面BCE;
(2)求證:AE∥平面BFD;
(3)求三棱錐C-BGF的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com