直線上的點(diǎn)與原點(diǎn)的距離的最小值是

A.      B.      C.     D.

 

【答案】

B

【解析】解:直線上的點(diǎn)與原點(diǎn)的距離的最小值是原點(diǎn)到直線的距離。則可知,選B

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A(0,
2
)
為圓心,1為半徑為圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于直線y=x對稱.
(1)求雙曲線C的方程;
(2)若Q是雙曲線C上的任一點(diǎn),F(xiàn)1、F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程;
(3)設(shè)直線y=mx+1與雙曲線C的左支交于A、B兩點(diǎn),另一直線L經(jīng)過M(-2,0)及AB的中點(diǎn),求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A (0,)為圓心,1為半徑的圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于y = x對稱.

    (1)求雙曲線C的方程;

    (2)若Q是雙曲線線C上的任一點(diǎn),F1F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程;

    (3)設(shè)直線y = mx + 1與雙曲線C的左支交于A、B兩點(diǎn),另一直線l經(jīng)過M (–2,0)及AB的中點(diǎn),求直線ly軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若斜率為2的動(dòng)直線l與拋物線x2=4y相交于不同的兩點(diǎn)A、B,O為坐標(biāo)原點(diǎn).
(1)若線段AB上的點(diǎn)P滿足數(shù)學(xué)公式,求動(dòng)點(diǎn)P的軌跡方程;
(2)對于(1)中的點(diǎn)P,若點(diǎn)O關(guān)于點(diǎn)P的對稱點(diǎn)為Q,且數(shù)學(xué)公式,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓數(shù)學(xué)公式(a>b>0)與x軸,y軸的正半輛分別交于A,B兩點(diǎn),原點(diǎn)O到直線AB的距離為數(shù)學(xué)公式,該橢圓的離心率為數(shù)學(xué)公式
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)數(shù)學(xué)公式的直線l與橢圓交于兩個(gè)不同的點(diǎn)M,N,求線段MN的垂直平分線在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市閔行區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

若斜率為2的動(dòng)直線l與拋物線x2=4y相交于不同的兩點(diǎn)A、B,O為坐標(biāo)原點(diǎn).
(1)若線段AB上的點(diǎn)P滿足,求動(dòng)點(diǎn)P的軌跡方程;
(2)對于(1)中的點(diǎn)P,若點(diǎn)O關(guān)于點(diǎn)P的對稱點(diǎn)為Q,且,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案