已知函數(shù)f(x)=-x3+3x在點(diǎn)A,B處分別取得極大值和極小值.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)過原點(diǎn)O的直線l若與f(x)的圖象交于A,B兩點(diǎn),求|OA||OB|.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,可得函數(shù)的極大值和極小值,即可求A,B兩點(diǎn)的坐標(biāo);
(2)由(1)得A(1,2),B(-1,-2),所以|OA|=|OB|=
5
,即可得出結(jié)論.
解答: 解:(1)f'(x)=(-x3+3x)'=-3x2+3=0…(1分)
可得x=-1或x=1.…(3分)
當(dāng)x變化時(shí),f′(x),f(x)的變化情況為
x(-∞,-1)-1(-1,1)1(1,+∞)
f′(x)-0+0-
f(x)單調(diào)遞減-2單調(diào)遞增2單調(diào)遞減
∴x=-1時(shí),函數(shù)取得極小值-2,x=1時(shí),函數(shù)取得極大值2,
∴A(1,2),B(-1,-2)…(7分)
(2)由(1)得A(1,2),B(-1,-2),
∴|OA|=|OB|=
5
,
∴|OA||OB|=5.…(13分)
點(diǎn)評:本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的單調(diào)性與極值,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某單位擬安排6位員工在今年5月31日至6月2日(端午節(jié)假期)值班,每天安排2人,每人值班1天.若6位員工中的甲不值5月31日,乙不值6月2日,則不同的安排方法共有( 。
A、30種B、36種
C、42種D、48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+3,x=2是y=f(x)的一個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的值.
(2)若方程f(x)=m只有一個(gè)解,則m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+x2-xlnx(a>1)
(1)求函數(shù)f(x)單調(diào)遞增區(qū)間;
(2)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然對數(shù)的底數(shù)),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},前n項(xiàng)和為Sn=n2+Bn,a7=14.
(1)求B、an;
(2)設(shè)cn=n•2an,求Tn=c1+c2+…+cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),|
a
-
b
|=
2
5
5

(1)求cos(α-β)的值;
(2)若0<α<
π
2
,-
π
2
<β<0,且sinβ=-
5
13
,求sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且an和Sn滿足Sn=
1
2
(an2+an),n∈N*
(1)求{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=(
1
2
nan,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(-1)nλ<Tn+
n
2n
對一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,函數(shù)f(x)=ax2+
b
x
(x∈R,x≠0)在x=1時(shí)有極小值
3
2

(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)曲線是1936年美國廉乃爾大學(xué)T.P.Wright博士在飛機(jī)制造過程中,通過對大量有關(guān)資料、案例的觀察、分析、研究,首次發(fā)現(xiàn)并提出來的.已知某類學(xué)習(xí)任務(wù)的學(xué)習(xí)曲線為:f(t)=
3
4+a•2-t
•100%(其中f(t)為掌握該任務(wù)的程度,t為學(xué)習(xí)時(shí)間),且這類學(xué)習(xí)任務(wù)中的某項(xiàng)任務(wù)滿足f(2)=60%.
(1)求f(t)的表達(dá)式,計(jì)算f(0)并說明f(0)的含義;
(2)若定義
f(t)
2t-1
為該類學(xué)習(xí)任務(wù)在t時(shí)刻的學(xué)習(xí)效率指數(shù),研究表明,當(dāng)學(xué)習(xí)時(shí)間t∈(1,2)時(shí),學(xué)習(xí)效率最佳.當(dāng)學(xué)習(xí)效率最佳時(shí),求學(xué)習(xí)效率指數(shù)相應(yīng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案